Abstract:
A hydraulic hose end expansion chamber preferably includes a tube, a first end plate, a second end plate, a threaded nipple, an o-ring and a drain screw. The threaded nipple is attached to the first end plate. The threaded nipple is threadably engaged with a threaded hole in a female hydraulic quick disconnect coupler. The first end plate is attached to a first end of the tube. A threaded hole is formed through the second end plate to threadably receive the drain screw. The o-ring is pushed on to the threaded shaft. The second end plate is attached to a second end of the tube. An L-shaped handle is preferably attached to the second end of the tube. A second embodiment of the hydraulic hose end expansion chamber includes a compression spring with a piston. A third embodiment of the hydraulic hose end expansion chamber includes a nitrogen filled bladder.
Abstract:
An accumulator for a vehicle may include a cylinder defining a bore having an inner surface, and a piston moveable within the bore. The piston may include a seal and a guide section defined by a truncated sphere. The guide section orients the piston within the bore such that the seal maintains contact with the inner surface of the bore.
Abstract:
A depth compensated subsea accumulator with a cylinder with a cylinder end, a first larger bore, a cylinder shoulder and a second smaller bore, a piston sealingly and slidably engaging the first large bore with a single direction seal and having a rod attached to a first side, the rod sealingly and slidably engaging the second smaller bore, the piston having a working fluid on the first side and a compressed gas on the second side, the working fluid on the first side of the piston having a higher pressure than the gas on the second side of the piston while the piston is moving between the cylinder end and the cylinder shoulder, when the piston sealingly engages the cylinder shoulder, a portion of the working fluid on the first side of the piston within a seal diameter having a lower pressure than the gas on the second side of the piston and a portion of the working fluid on the first side of the piston outside the seal diameter having a higher pressure than the gas on the second side of the piston, such that the single direction seal always encounters pressure from the same direction.
Abstract:
An energy storage device a first member and a second member that is slidably engaged with the first member. There are at least two seals that slidably seal the first member to the second member and define a cavity therebetween that varies in volume with relative movement between the first member and the second member. The first member is biased toward the second member in a direction that resisted increases in volume of the cavity.
Abstract:
A breathable low pressure accumulator includes a housing with a cylindrical bore formed therein. A piston slides within the bore and includes an elastic piston head. A biasing member urges the piston towards a first end of the bore. At least one passage communicates between an exterior of the housing and a volume that is enclosed by the bore and the elastic piston head. The elastic piston head is formed of rubber. The elastic piston head is molded into the piston.
Abstract:
A piston-in-sleeve accumulator includes a cleaning element positioned on the piston and configured to remove and prevent debris from lodging between the piston and a cylindrical nonpermeable sleeve within which the piston slides. A seal on the piston is positioned to engage an opposing surface in the event of a leak, and thereby prevent the possibility of a complete drainage of pressurized fluid from occurring through the accumulator's fluid port. A position contactor switch is further provided to signal position of the piston within the accumulator.
Abstract:
A pressure fluid reservoir for a traction-controlled vehicle brake system; a reservoir unit including a plurality of pressure fluid reservoirs; and a method for producing a pressure fluid reservoir are disclosed. The pressure fluid reservoir with its structural size unchanged, has a larger installation space for a restoring element cooperating with a reservoir piston and at the same time can be produced economically. To that end, as the reservoir piston, a component reshaped in non-metal-cutting fashion from a sheet-metal material is proposed, on whose circumference an encompassing receptacle for a piston seal is integrally formed, likewise in non-metal-cutting fashion. The reservoir piston can be produced by deep drawing; the receptacle for the piston seal can be produced by roller-burnishing. Both method steps can be performed economically in one combined operation.
Abstract:
A piston-type accumulator comprises: a) an accumulator housing provided in the form of a cylinder tube (1) made of magnetizable material, which defines an axial direction of the housing; b) a piston (3), which can be axially displaced over a stroke path inside the cylinder tube (1) and which forms a moving separating element that, inside the accumulator housing, separates two working spaces (7 and 9) from one another; c) a magnet arrangement (29, 31, 35), which is placed on the piston (3) and which generates a field on the wall of the cylinder tube (1), and; d) a magnetic field sensor device, which is located on the exterior of the cylinder tube (1) and which has at least one Hall sensor (51). Said Hall sensor is mounted on the exterior of the cylinder tube (1) and responds to the field generated by the magnet arrangement (29, 31, 35) on the piston (3) in order to determine the position of the piston (3) along the stroke path.
Abstract:
The invention relates to a method for producing piston-type accumulators comprising an accumulator housing (10) and a separating piston which can be displaced in a longitudinal direction inside the accumulator housing (10) and separates two working spaces located therein. The end faces of the accumulator housing are sealed by means of one respective cover part (20). Previously known production methods are further improved due to the fact that the cover part (20) is fixed on one side (40) thereof via the free longitudinal edge (32) of the accumulator housing (10), which is displaced towards the cover part (20) in order to do so, such that a functionally and positionally secure connection of a cover part is ensured within the housing of a piston-type accumulator without using standard threaded connections.
Abstract:
A lightweight, low permeation, piston-in-sleeve high pressure accumulator is provided. The accumulator includes a cylindrical composite pressure vessel with two integral rounded ends. A piston slidably disposed in a thin nonpermeable internal sleeve in the accumulator separates two chambers, one adapted for containing a working fluid and the other adapted for containing gas under pressure. Working fluid is provided in a volume between the nonpermeable internal sleeve and the composite pressure vessel wall. Further means are provided for withstanding harmful effects of radial flexing of the composite vessel wall under high pressures, and from stresses present in use in mobile applications such as with a hydraulic power system for a hydraulic hybrid motor vehicle. A method for pre-charging the device is also presented.