Abstract:
Substantially rectangular-shaped tanks are provided for storing liquefied gas, which tanks are especially adapted for use on land or in combination with bottom-supported offshore structure such as gravity-based structures (GBS). A tank according to this invention is capable of storing fluids at substantially atmospheric pressure and has a plate cover adapted to contain fluids and to transfer local loads caused by contact of said plate cover with said contained fluids to an internal frame structure comprised of a plate girder ring frame structure and/or an internal truss frame structure. Optionally, a grillage of stiffeners and stringers may be disposed on the plate cover and additional sifters disposed on the plate girder ring frame structure and/or an internal truss frame structure. Methods of constructing these tanks are also provided.
Abstract:
The invention concerns a liquefied gas transfer installation, in particular for liquefied natural gas, adapted to transfer liquefied gas between two surface tanks and distally spaced apart. The installation comprises a transfer line. The transfer line is immersed in water. The invention is applicable to installations for loading ships with natural gas.
Abstract:
A cryogenic vessel includes a first, outer vessel assembly having an outer vessel and a liquid fill line assembly and a second, ullage space vessel having a bottom and disposed within the first, outer vessel, adjacent to the top of the first, outer vessel. The liquid fill line assembly has a venturi assembly adjacent the bottom of the ullage space vessel. The venturi assembly is structured to create a low pressure zone, relative to the ullage space vessel, during a fill procedure whereby, during a fill procedure, fluid is drawn from within the ullage space vessel into the fill line assembly.
Abstract:
The method for loading pressurized compressed natural gas into a storage element on a floating vessel entails introducing compressed natural gas from a source into a storage element located on the floating vessel raising the storage element pressure from about 800 psi to about 1200 psi at an ambient temperature; allowing a portion of the compressed natural gas to cool forming a liquid in the storage element; removing remaining vapor phase compressed natural gas from the storage element to a refrigeration plant, wherein the refrigeration plant is adapted to cool the vapor; removing the liquid from the storage element to the refrigeration plant; wherein the refrigeration plant is adapted to cool the liquid; mixing the cooled vapor phase with the cooled liquid phase and returning the mixture to the storage element; repeating the steps until the vapor has been cooled and is substantially a liquid.
Abstract:
An apparatus for draining reservoirs includes a pump disposed in contact with a lower surface of the vessel to be drained, wherein the pump is connected to a discharge pipe inserted into the vessel through an insertion tube connected to a retrofit assembly of the vessel. The apparatus also includes seals within the insertion tube and within the discharge pipe to prevent gases from within the vessel from passing through the insertion tube and discharge pipe and into the atmosphere. An expansion joint unit attaches to the discharge pipe to prevent the rotation of the pump relative to the discharge pipe. The expansion joint unit also maintains the pump in substantial contact with the lower surface of the vessel even when thermal expansion causes the vessel to expand and the position of the discharge pipe to lift.
Abstract:
An evaporation apparatus for solvent fuel has an extra fuel reservoir installed outside of an evaporation tank, and a fuel level controller for controlling the amount of fuel in the evaporation tank so as to maintain the concentration of gaseous fuel in the evaporation tank in a preferable state for stable combustion. The fuel level controller is composed of a float bowl and a gate switch, the on/off of the latter is controlled by the position of the former which in turn controls the amount of fuel contained in the evaporation tank. A heating strip installed outside of the evaporation tank is connected with a temperature controller having a temperature gage to control the inner temperature of the evaporation tank stably at a constant value. This apparatus has only to heat a small amount of fuel in a short heating time so that the temperature can be easily controlled and the quality of the fuel is upgraded by keeping the concentration of gaseous fuel stably.
Abstract:
A sealed wall structure includes at least one sealed plate (10), the plate (10) being corrugated with at least one first series of corrugations and a second series of corrugations (6) of secant directions, the corrugations protruding toward the internal face of a tank. The structure includes at least one reinforcing ridge (11) made on at least one corrugation of a series in its portion lying between two successive intersections (8) with corrugations of the other series, each ridge (11) being generally convex and made locally on at least one lateral face (6b) of the corrugation that supports it.
Abstract:
Apparatus is described for transferring cryogenic fluid from a first vessel (5) to a second vessel in an offshore environment. The apparatus comprises a partly submerged floating dock (1) with variable buoyancy means (14, 15) operable to alter the draught of the dock (1), enabling it to be lowered in the water and raised again to engage the dock (1) with the second vessel. A single point mooring system (3) is attached to the dock (1) via flexible connections means (11,19).
Abstract:
System for controlling a hazardous fluid distribution facility wherein a control arrangement is provided at the facility having a power on switch providing for its general energization and de-energization along with a start switch which is actuated by an operator for an interval of time sufficient for a gas pressure control monitor to assume an enable condition causing the actuation of tank valves and the enablement of emergency shut-off valves. A receiver is incorporated with the housing which performs in conjunction with strategically positioned emergency transmitters which are actuated by personnel in the event of a perceived emergency condition. The transmitters transmit an off-state signal which is responded to by the receiver circuit to vent the pneumatic actuation and enablement system as well as to disenable electrical input to pump motors. The transmitters are polled periodically by the receiver circuit to determine their operational status.
Abstract:
System and method for controlling a hazardous fluid distribution facility wherein a control arrangement is provided at the facility having a power on switch providing for its general energization and de-energization along with a start switch which is actuated by an operator for an interval of time sufficient for a gas pressure control monitor to assume an enable condition causing the actuation of tank valves and the enablement of emergency shut-off valves. A receiver is incorporated with the housing which performs in conjunction with strategically positioned emergency transmitters which are actuated by personnel in the event of a perceived emergency condition. The transmitters transmit an off-state signal which is responded to by the receiver circuit to vent the pneumatic actuation and enablement system as well as to disenable electrical input to pump motors. The transmitters are polled periodically by the receiver circuit to determine their operational status.