Abstract:
A cable set including at least one electrical audio conductor for transmitting an audio signal from a receiver unit to a head phone or ear phone, wherein the at least one electrical audio conductor includes a first end provided with a first plug and connectable with the head phone or ear phone and a second end that is arranged opposite to the first end, wherein at least one sensor configured to measure an orientation of the sensor is arranged at a distance of 40 cm at the most from the first end of the at least one electrical audio conductor and attached at the at least one electrical audio conductor. The invention also relates to a method for transmitting an audio signal from a monitoring unit to headphones or earphones arranged at a head of a bearer.
Abstract:
A control device may be configured to control one or more electrical loads in a load control system. The control device may be a wall-mounted device such as dimmer switch, a remote control device, or a retrofit remote control device. The control device may include a gesture-based user interface for applying advanced control over the one or more electrical loads. The types of control may include absolute and relative control, intensity and color control, preset, zone, or operational mode selection, etc. Feedback may be provided on the control device regarding a status of the one or more electrical loads or the control device.
Abstract:
A control device may be configured to control one or more electrical loads in a load control system. The control device may be a wall-mounted device such as dimmer switch, a remote control device, or a retrofit remote control device. The control device may include a gesture-based user interface for applying advanced control over the one or more electrical loads. The types of control may include absolute and relative control, intensity and color control, preset, zone, or operational mode selection, etc. Feedback may be provided on the control device regarding a status of the one or more electrical loads or the control device.
Abstract:
A position measuring device for use on a machine tool includes a scale section that can be scanned by way of a scanner device and serves to detect a position of a first component of the machine tool in relation to a second component of the machine tool, which is movable in relation to the first component, when the scale section is arranged on the first component and the scanner device is arranged on the second component, and at least one holding element as a constituent of an indirect attachment for indirectly attaching the scale section to the first component of the machine tool. A material of the at least one holding element has a thermal expansion coefficient that is less than a thermal expansion coefficient of a material of the first component of the machine tool.
Abstract:
A method and apparatus for measuring stem nut wear in a valve having a threaded valve stem that is positioned to engage the threads of a stem nut. In a preferred embodiment, a tool is mounted on the stem nut, wherein the tool rotates when the stem nut rotates. The tool indicates a measurement of stem nut rotation. An indicator indicates stem movement. The stem nut is rotated and the amount of percent wear is observed. Rotation continues until the stem begins to move. The tool provides a reading when the stem begins to move that indicates an amount of stem nut wear.
Abstract:
A cable is used for running a load between surface and downhole in a well. The cable includes one or more wires composed of a non-metallic material. Each of the one or more wires bears the load from the surface and can electrically conduct between the surface and downhole. An insulating material is disposed about the one or more wires and insulates the electrical conduction. The non-metallic material includes a carbon nanotube wire. A jacket can be disposed about the insulating material, and the jacket can be composed a non-metallic material also, such as carbon nanotube wire. Markers disposed at predefined distances along the length of the cable are used to determine the deployed length of the cable.
Abstract:
A sensor assembly includes a first structure and a second structure disposed radially outwardly of the first structure. Also included is a sensor body extending through the first and second structures, the sensor body having first and second ends, the first end disposed proximate a first environment defined by the first structure and the second end located radially outwardly of the second structure. Further included is a first sealing assembly configured to operatively couple the sensor body to the second structure and to accommodate movement of the sensor body. Yet further included is a position sensor operatively coupled to the sensor body, the position sensor configured to determine a position of a target located within the first interior volume. Also included is at least one biasing member in contact with the target to bias the target into constant operative contact with the sensor body.
Abstract:
A method of determining the angular position of a roll includes: (a) detecting signals generated by an accelerometer attached to an end of a rotating roll; (b) determining whether a signal generated in step (a) has reached a pre-trigger threshold, and repeating step (a) if the signal has not reached the pre-trigger threshold; (c) if the signal is determined in step (b) to have reached the pre-trigger threshold, detecting a subsequent signal generated by the accelerometer; (d) determining whether the signal detected in step (c) has reached a trigger threshold, and repeating step (c) if the signal has not reached the trigger threshold; and (e) if the signal has reached the trigger threshold, establishing the angular position of the roll based on the signal that has reached the trigger threshold.
Abstract:
A method for producing a device including plural cavities defined between a substrate in at least one given semiconductor material and a membrane resting on a top of insulating posts projecting from the substrate, the method allowing a height of the cavity or cavities to be adapted independently of a height of the insulating posts and allowing cavities of different heights to be formed.
Abstract:
A method and apparatus for measuring stem nut wear in a valve having a threaded valve stem that is positioned to engage the threads of a stem nut. In a preferred embodiment, a tool is mounted on the stem nut, wherein the tool rotates when the stem nut rotates. The tool indicates a measurement of stem nut rotation. An indicator indicates stem movement. The stem nut is rotated and the amount of percent wear is observed. Rotation continues until the stem begins to move. The tool provides a reading when the stem begins to move that indicates an amount of stem nut wear.