Abstract:
A spectrometric system has a primary channel with a signal waveform and a reference channel with a signal waveform. A digital representation of the primary signal waveform and a digital representation of the reference signal waveform to provide a digital output representing the primary signal at datum points synchronized with the reference signal are processed by computing the Fourier transform of the primary signal waveform and using a fast reverse non-uniform discrete Fourier Transform technique to compute the reverse non-uniform discrete Fourier transform of the Fourier transform of the primary signal waveform to provide the digital output representing the primary signal at datum points synchronized with the reference signal.
Abstract:
A system for comparative interferogram spectrometry includes an interferometer configured to generate interferograms from incident radiation from a target region, an interferogram database containing stored interferograms, and a processing subsystem configured to receive the generated interferograms and compare the received interferograms to the stored interferograms.
Abstract:
A bandwidth meter method and apparatus for measuring the bandwidth of a spectrum of light emitted from a laser input to the bandwidth meter is disclosed, which may comprise an optical bandwidth monitor providing a first output representative of a first parameter which is indicative of the bandwidth of the light emitted from the laser and a second output representative of a second parameter which is indicative of the bandwidth of the light emitted from the laser; and, an actual bandwidth calculation apparatus utilizing the first output and the second output as part of a multivariable equation employing predetermined calibration variables specific to the optical bandwidth monitor, to calculate an actual bandwidth parameter. The actual bandwidth parameter may comprise a spectrum full width at some percent of the maximum within the full width of the spectrum of light emitted from the laser (“FWXM”) or a width between two points on the spectrum enclosing some percentage of the energy of the full spectrum of the spectrum of light emitted from the laser (“EX”). The bandwidth monitor may comprise an etalon and the first output is representative of at least one of a width of a fringe of an optical output of the etalon at FWXM or a width between two points on the spectrum enclosing some percentage of the energy of the full spectrum of light emitted from the laser (“EX'”) and the second output is representative of at least one of a second FWX″M or EX′″, where X≠X″ and X′≠X′″. The precomputed calibration variables may be derived from a measurement of the value of the actual bandwidth parameter utilizing a trusted standard, correlated to the occurrence of the first and second outputs for a calibration spectrum. The value of the actual bandwidth parameter is calculated from the equation: estimated actual BW parameter=K*w1+L*w2+M, where w1=the first measured output representative of FWXM or EX′ and w2 is the second measured output representative of FWX″M or EX′″. The apparatus and method may be implemented in a laser lithography light source and/or in an integrated circuit lithography tool.
Abstract:
A method for measuring scene inhomogeneity includes directing radiance of a scene into an interferometer; and oscillating a field-of-view (FOV) of the interferometer, while directing the radiance of the scene into the interferometer. A Fourier transform of signals emerging from the interferometer is obtained with magnitude values of the Fourier transform as a function of wavelength. The magnitude values are separated into (1) component values occurring within a predetermined wavelength band of the interferometer and (2) a component value occurring outside the predetermined wavelength band. The component value occurring outside the predetermined wavelength band is used to measure scene inhomogeneity.
Abstract:
A Fourier-domain optical coherence tomography (OCT) imager is presented. An OCT imager according to the present invention can have an auto-alignment process. The auto-alignment process automatically adjusts at least one optical component of a spectrometer of the imager so that the spectrometer is aligned during an imaging session. In addition to the auto-alignment process, OCT spectra are normalized for background spectra and for noise characteristics in order to provide a more accurate and clear OCT image.
Abstract:
Apparatus, method and storage medium which can provide at least one first electro-magnetic radiation to a sample and at least one second electromagnetic radiation to a reference, such that the first and/or second electromagnetic radiations have a spectrum which changes over time. In addition, a first polarization component of at least one third radiation associated with the first radiation can be combined with a second polarization component of at least one fourth radiation associated with the second radiation with one another. The first and second polarizations may be specifically controlled to be at least approximately orthogonal to one another.
Abstract:
A method capable of acquiring data at a high speed while holding proper precision during measurement with an infrared imaging apparatus uses an FTIR device of a continuous scan type for detecting a signal by a multi-element detector. A method which acquires data from a multi-element detector in an infrared imaging apparatus. The method involves starting to scan an element of the said multi-element detector synchronously with a sampling signal based on a reference signal of an interferometer, and scanning the element at a higher frequency than a sampling frequency of the sampling signal. The method further involves completing the scanning of all the elements before a next sampling signal to the sampling signal starting the element scanning is generated, and repeating a series of operations every time the sampling signal is generated.
Abstract:
An alignment self check of a wavelength meter is performed. A reference signal is placed into a reference signal path of the wavelength meter. The reference signal is also placed into an unknown signal path of the wavelength meter. It is then detected whether after traveling through the unknown signal path, the reference signal has a same period as after traveling through the reference signal path.
Abstract:
A bandwidth meter method and apparatus for measuring the bandwidth of a spectrum of light emitted from a laser input to the bandwidth meter is disclosed, which may comprise an optical bandwidth monitor providing a first output representative of a first parameter which is indicative of the bandwidth of the light emitted from the laser and a second output representative of a second parameter which is indicative of the bandwidth of the light emitted from the laser; and, an actual bandwidth calculation apparatus utilizing the first output and the second output as part of a multivariable equation employing predetermined calibration variables specific to the optical bandwidth monitor, to calculate an actual bandwidth parameter. The actual bandwidth parameter may comprise a spectrum full width at some percent of the maximum within the full width of the spectrum of light emitted from the laser (nullFWXMnull) or a width between two points on the spectrum enclosing some percentage of the energy of the full spectrum of the spectrum of light emitted from the laser (nullEXnull). The bandwidth monitor may comprise an etalon and the first output is representative of at least one of a width of a fringe of an optical output of the etalon at FWXM or a width between two points on the spectrum enclosing some percentage of the energy of the full spectrum of light emitted from the laser (nullEXnullnull) and the second output is representative of at least one of a second FWXnullM or EXnullnull, where XnullXnull and XnullnullXnullnull. The precomputed calibration variables may be derived from a measurement of the value of the actual bandwidth parameter utilizing a trusted standard, correlated to the occurrence of the first and second outputs for a calibration spectrum. Tthe value of the actual bandwidth parameter is calculated from the equation: estimated actual BW parameternullK*w1nullL*w2nullM, where w1nullthe first measured output representative of FWXM or EXnull and w2 is the second measured output representative of FWXnullM or EXnullnull. The apparatus and method may be implemented in a laser lithography light source and/or in an integrated circuit lithography tool.
Abstract:
A method and for acquiring interferogram data and a Fourier transform spectrometer, including a detector that provides an output signal that exhibits non-linear distortion in a measured interferogram represented by a power series Imnulla1Inulla2I2nulla3I3null . . . , comprising the steps of representing a measured spectrum as Smnulla1 Snulla2(S*S)nulla3 (S*S*S)nullb3 (S*S*S*S)null . . . where S is the spectrum of the linear interferogram and * indicates convolution, expressing a linear interferogram I as a power series of a measured interferogram Im as in Inullb1Imnullb2Im2nullb3Im3null . . . , expressing the linear spectrum as a power series of the spectra of the interferogram powers Snullb1S1nullb2S2nullb3S3 . . . , and obtaining the coefficients bi where Snull0.