Abstract:
A GaAs/AlGaAs multiple-quantum-well (MQW) is used as an optical mixer for environmental monitoring of atmospheric emission or absorption signals in the infrared (IR) region. The atmospheric signals are combined with coherent laser local oscillator emission lines to produce IF signals within the electrical bandwidth of the MQW mixer.
Abstract:
A low temperature solid state light detecting system is disclosed. The same incorporates a source of cooling and an electrical light detector. A heat conducting member extends from the detector chip to the source of cooling. A vacuum chamber contains the light detector. The chamber has a window for permitting light to fall on the electrical light detector. A plurality of electrical feedthrough devices are mounted on the chamber for coupling electricity from inside the chamber to the outside of the chamber. A plurality of bare wires extends from the detector to the feedthrough devices positioned on the housing.
Abstract:
A radiometric standard detector responsive to infrared energy comprises an indium antimonide photovoltaic generator, a first mirror and a vacuum dewar including a cold finger and a window. The first mirror and photovoltaic generator are positioned in the dewar to form an optical energy trap. The generator is on the cold finger. A second mirror is external to the dewar. The window, both mirrors and the generator are positioned so a beam of the infrared energy is incident on the window and a portion of the infrared energy incident on the window is reflected from the window to the second mirror, then back to the window.
Abstract:
A novel dual spectra optical pyrometer is characterized by a serial array of photodetectors. The first photodetector absorbs a spectral portion of a target optical beam incident thereto, and passes the remainder optical beam to the second photodetector. Signals from both photodetectors are provided along with signals indicative of the first detector's spectral absorption and an estimate of the equivalent black body temperature of a fireball to a signal processor which provides a compensated temperature signal therefrom.
Abstract:
Fiber optic probe apparatus usable for measuring temperatures with increased dynamic range and frequency domain response and desirable measurement accuracy. A black body signal source, fiber optic signal coupling, and extension of the transducer dynamic range with optical multiplexing are employed; the instrument operates in the range of 1.6 micrometers of optical energy wavelength and preferably employs recently improved indium gallium arsenide photodiode transducer devices and transducer frequency domain compensation. Use of the instrument in measuring combustion flame transient temperatures is disclosed.
Abstract:
An infrared radiation detector including a cadmium sulfide (CdS) platelet having a cathode formed on one of its ends and an anode formed on its other end. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when biased in the negative differential conductivity region. A negative potential is applied to the cathode such that a highfield domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.
Abstract:
A novel, solid state heating circuit is provided to maintain the photosensitive cell. At a predetermined temperature such that the instrument response is essentially independent of ambient temperature.