摘要:
A bipolar/CMOS regulator circuit for generating a CMOS gate-controlling voltage, which varies favorably with temperature, power supply voltage and process corner so as to yield a well-controlled CMOS current includes a bipolar bandgap regulator circuit portion (12) and a conversion circuit portion (14). The conversion circuit portion (14) is formed of a current mirror section (18), a current source section (20) and an output section (22).
摘要:
A voltage level conversion circuit manufacturable in a standard semiconductor process is provided wherein an output voltage having a magnitude greater than the supply voltage and greater than the gate oxide breakdown voltage of the MOS devices is produced. A voltage level shifter circuit alternately charges a pair of capacitors which in turn alternately charges a second pair of capacitors. The second pair of capacitors is coupled to the output to produce the shifted output voltage having a frequency that is double the frequency of the input to the voltage level shifter circuit.
摘要:
A start-up circuit/current source includes a first current path including serially connected first field effect transistor, first resistor, first bipolar transistor, and second resistor. A second current path includes a second field effect transistor, a second bipolar transistor, and a third resistor. The base electrodes of the first and second bipolar transistors are interconnected, and the base and collector of the second bipolar transistor are shorted together. A first current source includes a bipolar transistor serially connected through the third resistor, the base of the third bipolar transistor connected to the first current path. A second current source can be provided including a fourth bipolar transistor serially connected with a fourth resistor and with the base of the fourth transistor connected to a common terminal of the first resistor and first bipolar transistor. The two field effect transistors can be replaced by two equal resistors or by a single field effect transistor serially connected with a two-collector PNP bipolar transistor which provides the equal currents for the two current paths. The current source is independent of supply voltage and the magnitude of the currents in the two current paths so long as the currents are equal. Accordingly, the circuit is independent of poorly-controlled currents in field effect transistors so long as the currents are equal.
摘要:
Current source circuitry consisting of a first n-channel field effect transistor (FET) and voltage generator circuitry coupled to the gate of the first FET. The voltage generator circuitry acts to control the current through the first FET such that it is essentially constant even with power supply, temperature, and many processing variations. The voltage generator circuitry consists of a second FET, a two input differential operational amplifier, a resistor, and an n-p-n transistor if the resistor has a positive temperature coefficient. A negative feedback path using the amplifier and the second FET ensures against current changes in the first and second FETs even if there are changes in one of the power supply levels and/or many semiconductor processing variations.
摘要:
Monolithic integration of digital logic circuitry, precision control circuitry, and high voltage interface circuits on the same semiconductor chip is achieved, using various combinations selected from D-MOS, vertical NPN, lateral NPN, PNP, P-MOS, N-MOS, and J-FET components. Cathode driver circuits for a plasma display panel are integrated with this technology. Other applications include automotive and television circuits.
摘要:
A voltage reference circuit (10) produces a reference voltage at output terminals (66, 76). The output reference voltage is substantially independent of variations in the supply voltage, integrated circuit manufacturing processes and temperature. A current reference circuit (30, 32, 34, 36, 38, 56 and 84) produces constant emitter currents in bipolar transistors (40, 70). The V.sub.BE of the bipolar transistors (40, 70) is a stable reference due to the constant emitter current. The bipolar transistors (40, 70) are manufactured with similar geometries to eliminate dependence of the reference voltage upon bipolar processing variations. The V.sub.BE of the bipolar transistor (40) produces a reference current which is provided to the base terminal of bipolar transistor (70). The V.sub.BE of bipolar transistor (70) is further utilized to produce the output reference voltage. A temperature stabilization circuit (58, 82, 86, 90, 92 and 94) is provided with an opposite temperature coefficient from that of the bipolar transistors (40, 70). The temperature stabilization circuit is connected to counteract the influence of the temperature coefficient of the bipolar transistors on the output reference voltage. There is thus established an output reference voltage which is substantially independent of supply voltage, processing and temperature.
摘要:
A pair of transistors are operated at different current densities so as to develop a differential base to emitter potential. This potential is used as a reference in a negative feedback stabilization circuit which passes a current that is regulated by the potential. The circuit can also regulate the currents flowing in a plurality of additional current sources and sinks connected thereto.
摘要:
A voltage reference includes a first current source and a flipped gate transistor coupled in series between an operating voltage node and a negative supply voltage node, a first transistor and a second current source coupled in series between the operating voltage node and the negative supply voltage node, and an output node between the first transistor and the second current source. A gate of the first transistor is coupled to a gate of the flipped gate transistor, the output node is configured to output a reference voltage, the first current source is configured to provide a first current to the flipped gate transistor, the second current source is configured to provide a second current to the first transistor, the second current being less than the first current, and the first transistor has a size greater than a size of the flipped gate transistor.
摘要:
Proposed is a band gap reference circuit under a low supply voltage capable of generating a band gap reference voltage even under a low supply voltage by using a plurality of bias voltages separately generated and a current source using these bias voltages without using a diode connected structure used in the related art while not being affected by limitations in the operating voltage of a bipolar transistor. The band gap reference circuit under a low supply voltage includes a voltage reference main circuit configured to generate a first node voltage and a second node voltage in response to a first bias voltage and a band gap reference voltage, and a transimpedance amplifier configured to generate the band gap reference voltage by amplifying a difference between the first node voltage and the second node voltage using the first bias voltage, a second bias voltage, and a third bias voltage.
摘要:
A bandgap reference circuit includes a plurality of current sources including different temperature coefficients, a first trimmer, and a mixer, The first trimmer adjusts current amounts for a plurality of currents, which are individually output from each of the plurality of current sources, to be equal to each other. The mixer adjusts an aggregate ratio and combines the plurality of currents based on the aggregate ratio.