Automated probabilistic axiom generation and incremental updates

    公开(公告)号:US11854252B1

    公开(公告)日:2023-12-26

    申请号:US17700802

    申请日:2022-03-22

    摘要: Described is a system for evaluating and correcting perception errors in object detection and recognition. The system receives perception data from an environment proximate a mobile platform. Perception probes are generated from the perception data which describe perception characteristics of object detections in the perception data. For each perception probe, probabilistic distributions for true positive and false positive values are determined, resulting in true positive and false negative perception probes. Statistical characteristics of true positive perception probes and false positive perception probes are then determined. Based on the statistical characteristics, true positive perception probes are clustered. An axiom is generated to determine statistical constraints for perception validity for each perception probe cluster. The axiom is evaluated to classify the perception probes as valid or erroneous. Optimal perception parameters are generated by solving an optimization problem based on the axiom. The perception module is adjusted based on the optimal perception parameters.