Abstract:
An AM/FM modulation scheme is presented for optimizing communications between a remote control device held by a user and a receiving unit installed in a vehicle. Historically, these systems communicated with amplitude modulated signals having good range but poor immunity to ambient random radio frequency noise. Frequency modulated systems provide improved immunity to noise however at the expense of range. The object of this invention is to use two or more modulation modes to combine their advantages. A scheme has been devised whereby circuitry capable of alternately operating in at least two modes is used. The same information is therefore transmitted using two or more modulation techniques in succession. The receiving unit also has circuitry and has listening cycles ensuring eventual synchronization with the transmitting unit. If one mode fails due to distance or ambient noise, the other can then attempt to establish a link.
Abstract:
A wireless remote control device of the present invention includes not only an infrared-transmitting section that transmits operational information to the outside so as to remotely control a predetermined electronic device but also a radio-wave-transmitting section that transmits information to the outside through the use of radio waves as a medium. Thus, it is easily possible to remotely control an electronic device such as audio-visual equipment and to transmit operational information in the form of radio waves with a higher degree of accuracy.
Abstract:
A technique includes receiving a command packet over a radio frequency communication link and determining whether additional processing of the command packet is needed. Based on the determination, the technique includes selectively communicating an indication of the command packet over an infrared communication link and communicating an indication of the command packet over the radio frequency communication link.
Abstract:
A wireless sensor and control system includes wireless RF transmitter units and one or more receivers that communicate using more than one narrowband radio channel to provide increased reliability in the presence of unintentional radio interference. The output of a sensor transducer or closure of a switch contact can trigger transmissions at two or more narrowband carrier frequencies that are subsequently decoded by the receiver(s). The remote sensor data can then be passed to another system for processing and/or utilized to control remote devices. In accordance with one practical embodiment, the remote sensor data indicates the ingress or egress of monitored product inventory.
Abstract:
A controlling device for operating a PC and one or more home appliances. The described controlling device has integrated mouse and remote control functions, and may be configured to automatically detect whether the controlling device is being used as a mouse or as a remote control. For effective operation in both control modes, the controlling device includes both RF and IR transmitters, and is configured to transition between these transmission mediums based on the detection of whether the controlling device is being used as a mouse or as a remote control.
Abstract:
A remote control, particularly for wireless remote control of a closing device in a motor vehicle, has a first transmitter for outputting an optical signal, and a second transmitter for outputting a radio signal. The two transmitters are able to be activated for signal output by at least one actuation element. An input of the first transmitter and/or of the second transmitter is connected to a clock transmitter in order to output the optical signal and/or the radio signal in pulsed fashion at particular intervals of time in order to save energy. Also an associated remotely controllable device and a full remote control configuration are disclosed.
Abstract:
When the power key on the remote controller 12 is pressed, the electromagnetic wave is sent from the remote controller 12 to the main unit 100 of the electric device and the switch circuit 23 or 43 as the first switching means is turned on. Upon turning on of the first switching means by the power key operation, the power starts to be supplied from the second power supply 22 or 41 serving as the stand-by power supply circuit to the load circuit required for stand-by operation such as the microcomputer 24 and the light receiver 10. After that, corresponding to the first infrared signal sent from the remote controller 12, the relay 3 as the second switching means is turned on so that the commercial AC power source 1 is supplied to the main power supply circuit 2 in the main unit 100 of the electric device and the load circuit for the ordinary operation in the main unit 100 (main circuit of the device) start operation. The power is supplied from the second power supply 22 or 41 serving as the stand-by power supply circuit to the load circuit required for stand-by operation only for a short period from the start of the stand-by status after the power key operation to the ordinary operation status, and the power supply amount for the second power supply 22 or 41 serving as the stand-by power supply circuit can be only a little. When any power supply other than the commercial AC power source 1 such as a solar battery 221 is used as the second power supply, the stand-by power of the electric device in stand-by status can be reduced to zero.
Abstract:
An electromagnetic remote control exposure system including a receiver and transmitter for excitation of a mobile X-ray unit having a rotating anode X-ray tube and exposure mechanism. The transmitter of the remote control is adapted to transmit by a single switch, a first signal to initiate the rotation of the anode and a second signal for the initiation of the actual X-ray exposure. The receiver is provided with a time out delay which causes the X-ray unit to return to the standby mode if the second signal is not received within a predetermined interval of time after receipt of the first signal. The system will also return the X-ray unit to the standby mode if the second signal is interrupted before the exposure has been completed.
Abstract:
A communication apparatus for a remote control apparatus, for example, in order to lock or unlock doors or a trunk of a vehicle selects a radio signal or optical signal in accordance with the conditions between the transmitter and receiver. Its transmitter is provided with a radio signal sending circuit, an optical signal sending circuit and a selection circuit which selects any one circuit for operation and a receiver which is provided with a radio signal receiving circuit which receives a radio signal transmitted from said radio signal sending circuit and an optical signal receiving circuit which receives an optical signal transmitted from said optical signal sending circuit.