Abstract:
A push-button switch comprises a substrate on which two conductive networks are formed, those networks comprising adjacent but separated conductive paths, a push-button member with a contact member thereon being mounted on the substrate with the contact member normally above and in registration with the separated conductive paths. The contract member is formed of elastic and electrically conductive material and is adapted when it is pushed down via the push-button member to engage the substrate, and hence the separated conductive paths, over an appreciable area, thereby ensuring effective switch operation.
Abstract:
Keyboard encoding apparatus having a plurality of keys with different codes of an N digit binary code assigned to each key. A plurality of groups of contact pads are secured to a sheet of electrically non-conductive material at different key locations which are in registration with the keys. Each group of pads includes at least one power pad and a number of digit pads equal to the number of binary 1''s in the associated code. A power lead is secured to the sheet and has connections to all of the power pads. N digit leads are also secured to the sheet with different digit leads being indicative of different orders of the code. Each of the digit leads has connections to those digit pads which are indicative of a like order of the code. A keying means includes a layer of spongy conductive material at each key location disposed in a normal position a distance away from the contact pads and responsive to the actuation of any one of the keys to provide a common connection of the digit pads and the power pad at the associated key location.
Abstract:
Disclosed are a switch and a manufacturing method thereof. The switch comprises a base substrate; and an electrode disposed on a first surface or a second surface of the base substrate. The flexible electrode includes: a substrate in a range of about 5 to 70 vol %; conductive particles embedded in the substrate in a range of about 29.9 to 94.9 vol %; and a degradation inhibitor in a range of 0.1 to 1 vol %, based on a total of 100 vol % of the electrode. In particular, the substrate of the electrode is flexible and thus the electrode is flexible.
Abstract:
A touch panel includes multiple belt-like lower electrodes formed on a light transparent base sheet and multiple belt-like upper electrodes placed away from the lower electrodes with a predetermined distance therebetween and in a direction crossing with the lower electrodes at right angles. The lower and upper electrodes are made of light transmissive and electrically conductive resin, so that they can be formed in a simple way such as printing. The foregoing structure thus allows obtaining the touch panel manufactured in a simple way at a lower cost.
Abstract:
An EL sheet and a member for lighting a push-button switch capable of emitting light stably and sufficiently for a long period of time without trouble such as non-light emission phenomena and generation of black dot, even if the EL element is subjected to, for example, a drawing process to form into a three dimensional shape, includes a counter electrode layer 15, dielectric layer 14, light-emitting layer 13, and transparent electrode layer 11. An adhesive layer 12 made of adhesive having excellent adhesiveness to the electroconductive polymer is disposed between the transparent electrode layer 11 made of an electroconductive polymer and the light-emitting layer 13. As for the adhesives having excellent adhesiveness, polyester, acrylic, cyanoacrylate, polyolefin, ethylene-vinyl acetate or ethylene ethyl acrylate type adhesive is used. The dielectric layer is made of fluoro type, polyester type or acrylic type resin binder. Furthermore, to improve durability in hot and high humidity environment, a second counter electrode layer 17 and/or a second dielectric layer 17, both having an ion diffusion-preventing function, is/are disposed.
Abstract:
A pressure actuated switching device is made by applying at least a first layer of fluid conductive polymeric coating material to a surface of a sheet of green rubber material. The conductive polymeric coating is solidified to form an electrode, and the sheet of green rubber material is vulcanized. Two strips of green rubber may be simultaneously processed and then joined such that the respective layers of conductive coating are in spaced apart opposing relationship. The conductive polymeric coating may optionally be formulated with green rubber. Optionally, a blowing agent may be included in the conductive coating formulation so as to provide a cellular polymeric foam piezoresistive material from which the electrode is constructed. The green rubber sheets may be processed by a continuous rotary method or by a linear method using a clamping press having opening and closing dies for heating and joining the strips of green rubber.
Abstract:
A rubber-contact member and a key input apparatus including the same are provided. The rubber-contact member has a plurality of key contacts corresponding to a plurality of circuit contacts located on the upper surface of a printed circuit board (PCB) and includes foldable parts for partitioning the entire area of the rubber-contact member into two or more zones, making an interval between the zones easily adjusted while the foldable parts deform, and therefore making the zones match in a one-to-one correspondence relevant zones of the PCB.
Abstract:
Key actuators and other switching devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
Abstract:
A touch screen comprising: a) a substrate; b) a first conductive layer located on the substrate; c) a flexible sheet comprising a substantially planar surface and integral compressible spacer dots formed thereon, each integral compressible spacer dot having a base closest to the substantially planar surface and a peak furthest from the substantially planar surface; and d) a second conductive layer located on the substantially planar surface of the flexible sheet, the peaks of the integral compressible spacer dots extending beyond the second conductive layer located on the substantially planar surface; wherein the first and second conductive layers are positioned towards each other and separated by the integral compressible spacer dots. Undercuts are formed around each integral compressible spacer dot, and the second conductive layer is electrically isolated from any conductive layer material deposited on the peaks of the spacer dots while depositing the conductive layer material on the substantially planar surface.
Abstract:
In an electrostatic capacitance sensor, an electrode is formed on a base board. The electrode is covered with a resist. A conductive rubber includes a first face and a second face. The first face has a fist area and is opposed to the resist. The second face is opposed to the first face. The second face has a second area which is larger that the first area. A flexible click rubber is attached to the second face of the conductive rubber for providing pressure contact of the conductive rubber with respect to the resist.