摘要:
A contact for a vacuum interrupter of a low, medium or high-voltage switchgear includes a contact rod composed of a first electrically conductive material and extending along a longitudinal axis of the contact, and a contact piece composed of a second electrically conductive material and fastened to an end face of the contact rod. The contact rod and the contact piece are materially bonded to one another at a connecting face. At least one of the contact rod or the contact piece has a wall which delimits the connecting face, rises perpendicularly to the longitudinal axis and is disposed such that the contact piece and the contact rod are also force-lockingly connected to one another by a force acting transversely to the longitudinal axis between the contact piece and the contact rod. A production method for such a contact is also provided.
摘要:
The present invention is a clad material for an electric contact, including a base material composed of a Cu-based, precipitation-type age-hardening material, and a contact material composed of an Ag alloy bonded to the base material. On a bonded interface between the contact material and the base material, a width of a diffusion region including Ag and Cu is 2.0 μm or shorter. The clad material is produced by bonding each other the contact material and the base material having undergone solutionizing and age-hardening beforehand, suppressing the diffusion region from expanding after bonding. The present invention is capable of providing an electric contact, which achieves higher conductivity, without sacrificing property of the Cu-based, precipitation-type age-hardening material.
摘要:
In a contact member, a mesh-like contact including one or more layers of a metal other than a noble metal is embedded in such a manner as to be exposed from one of the surfaces of a rubbery elastic body. The contact member includes a highly conductive metal coat layer only in the regions of the mesh-like contact which are exposed from the rubbery elastic body, the coat layer having conductivity higher than that of the metal on the outermost surfaces of the mesh-like contact.
摘要:
An electrical contact includes: a first contact surface; a second contact surface; and a coating dispersed on at least one of the first or second contact surfaces, where the coating includes the cured product of a telechelic polypropylene glycol-polyethylene glycol multi-block polymer.
摘要:
A Micro-Electro-Mechanical System (MEMS) switch includes: a substrate; a fixed electrode provided on the substrate; and a beam fixed to the substrate and including a movable electrode disposed to face the fixed electrode. The beam is capable of being bent and displaced in a direction of the substrate to allow the movable electrode to directly contact with the fixed electrode. At least one of the fixed electrode and the movable electrode contains Au, and the other contains at least one metal selected from a group consisting of Ir, Rh, Os, Ru, Re and Te as a main component.
摘要:
Wiring patterns are made of a conductive material containing Ag particles that exhibit high conductivity. Connection terminals that are connected to the ends of part of the wiring patterns, respectively, are made of a conductive material containing conductive particles in each of which an Au coating layer is formed on the surface of a conductive core particle. The connection terminals are arranged parallel with each other at small intervals on a narrow insertion portion of a flexible insulative board without being covered with respective conductive coatings.
摘要:
The invention intends to provide a direct current load breaking contact point constitution that can make and break an electrical circuit under both direct current loads of direct current resistance load and direct current inductance load over a long period of time without causing problems such as {circle around (1)} the conduction defect due to the consumption of the contact point, {circle around (2)} the locking due to material transfer from one contact point to the other contact point, {circle around (3)} the welding between the contact points, and {circle around (4)} the abnormal arc continuation, and a direct current load breaking switching mechanism such as a relay, a switch and so on that has the contact point constitution. The direct current load breaking contact point constitution according to the invention comprises a movable contact point and a stationary contact point that face each other; wherein the movable contact point is made of AgSnO2In2O3 alloy that contains at least Ag, 8 to 15% by weight in total of metal oxides including SnO2 and In2O3, 6 to 10% by weight of SnO2 and 1 to 5% by weight of In2O3; the stationary contact point is made of AgZnO alloy that contains at least Ag and 7 to 11% by weight of ZnO; and polarity of a movable side is (+) and that of a stationary side is (−).
摘要翻译:本发明旨在提供直流负载断开触点结构,其可以在直流电流负载和直流电感负载的两个直流负载下长时间地产生和断开电路,而不会引起诸如圆周的问题 (1)由于接触点的消耗引起的导电缺陷{圆周(2)由于从一个接触点到另一接触点的材料转移而导致的锁定,{圆周(3)接触点之间的焊接和{圆 围绕(4个异常电弧继续)以及具有接触点构成的诸如继电器,开关等的直流负载断路切换机构,根据本发明的直流负载断开触点构造包括可动触点 以及彼此面对的固定触点;其中所述可动触点由AgSnO 2 N 2 N 3 Al 3 y,其含有至少Ag,总共含有8〜15重量%的金属氧化物,包括SnO 2和N 2 O 3,6〜 10重量%的SnO 2 2和1至5重量%的In 2 N 3 O 3; 固定接触点由AgZnO合金制成,AgZnO合金至少含有Ag和7至11重量%的ZnO; 并且可动侧的极性为(+),而固定侧的极性为( - )。
摘要:
Trilayered Beam MEMS Device and Related Methods. According to one embodiment, a method for fabricating a trilayered beam is provided. The method can include depositing a sacrificial layer on a substrate and depositing a first conductive layer on the sacrificial layer. The method can also include forming a first conductive microstructure by removing a portion of the first conductive layer. Furthermore, the method can include depositing a structural layer on the first conductive microstructure, the sacrificial layer, and the substrate and forming a via through the structural layer to the first conductive microstructure. Still furthermore, the method can include the following: depositing a second conductive layer on the structural layer and in the via; forming a second conductive microstructure by removing a portion of the second conductive layer, wherein the second conductive microstructure electrically communicates with the first conductive microstructure through the via; and removing a sufficient amount of the sacrificial layer so as to separate the first conductive microstructure from the substrate, wherein the structural layer is supported by the substrate at a first end and is freely suspended above the substrate at an opposing second end.
摘要:
Electrothermal Self-Latching MEMS Switch and Method. According to one embodiment, a microscale switch having a movable microcomponent is provided and includes a substrate having a stationary contact. The switch can also include a structural layer having a movable contact positioned for contacting the stationary contact when the structural layer moves toward the substrate. An electrothermal latch attached to the structural layer and having electrical communication with the movable contact to provide current flow between the electrothermal latch and the stationary contact when the movable contact contacts the stationary contact for maintaining the movable contact in contact with the stationary contact.
摘要:
An electrical switch has an evacuated housing with input and output terminals each connected to a respective group of metal tracks extending parallel and insulated from one another. A second silicon plate is cut to form several bridging elements, each having a metal layer on its upper and lower surface. Each bridging element extends transversely above tracks connected to different ones of the terminals. The housing is closed by a silicon cap having actuating tracks extending above the bridging elements, which form an electrostatic actuator with the metal layer on the upper surface of the bridging elements. When a voltage is applied to the electrostatic actuator, the bridging elements are driven down so that they contact tracks connected to different ones of the terminals and allow current to flow between them.