Abstract:
The present invention relates to a plasma display panel. The plasma display panel according to an embodiment of the present invention comprises a front substrate and a rear substrate which are combined together with a predetermined distance therebetween, and one or more first phosphor layers that partition one or more discharge cells between the front substrate and the rear substrate. The plasma display panel according to the present invention are advantageous in that they reduce manufacturing costs and display images with high resolution.
Abstract:
The present invention relates to a plasma display panel. A plasma display panel according to an embodiment of the present invention comprises a first barrier rib, which partitions discharge cells in a first direction and has one or more holes formed therein, a second barrier rib, which partitions the discharge cells in the first direction and is formed between one first barrier rib and the other first barrier rib, a first electrode formed to overlap with the first barrier rib and a discharge cell region, and a second electrode formed on the second barrier rib. A plasma display panel according to an embodiment of the present invention can reduce power consumption and can reduce capacitance between barrier ribs and electrodes, while smoothly performing an address discharge.
Abstract:
An exemplary PDP according to an embodiment of the present invention includes first and second substrates, an address electrode, first and second barrier ribs, first and second electrodes, and a phosphor layer. The first and second substrates face each other, the address electrode is formed on the first substrate and extends in a first direction, the first barrier rib is formed on the first substrate and partitions a plurality of first discharge cells, the first barrier rib includes first barrier rib members, disposed in a second direction crossing the first direction, and second barrier rib members, disposed in the first direction. The first and second electrodes extend along the second direction and are disposed in the first discharge cells, corresponding to the first barrier rib members. The second barrier rib is formed on the second substrate and partitions second discharge cells that correspond to the first discharge cells. The second barrier rib includes third barrier rib members, corresponding to the first barrier rib members and protruding towards the first substrate, and fourth barrier rib members, corresponding to the second barrier rib members and protruding towards the first substrate. The phosphor layer is formed in the discharge cells on the second substrate.
Abstract:
A plasma display panel (PDP) includes a front panel, a rear panel disposed parallel to the front panel, first barrier ribs formed of a dielectric substance and disposed between the front panel and the rear panel to define a plurality of discharge cells, front discharge electrodes disposed inside the first barrier ribs so as to surround the discharge cells and spaced from the side surfaces of the discharge cells toward interiors of the first barrier ribs by an electrode-burying depth, rear discharge electrodes disposed inside the first barrier ribs so as to surround the discharge cells and spaced from the side surfaces of the discharge cells toward the interiors of the first barrier ribs by an electrode-burying depth at the rear side of the first discharge electrodes, a plurality of phosphor layers disposed inside the discharge cells for receiving ultraviolet rays and emitting visible rays, the phosphor layers having different dielectric constants, and a discharge gas filling the discharge cells. The electrode-burying depth corresponding to discharge cells in which phosphor layers having the lowest dielectric constant are formed is smaller than the electrode-burying depth corresponding to discharge cells in which phosphor layers having a relatively high dielectric constant are formed.
Abstract:
A plasma display panel includes plural discharge cells and a barrier rib layer which defines the discharge cells. Each discharge cells has two opposing electrodes on front and rear substrates, respectively, for generating discharge therebetween, discharge gas and phosphor films. The barrier rib layer is fabricated as a sheet separate from the substrates, is provided with openings each forming a discharge space, and is sandwiched between the substrates. The following relationships are satisfied: 0.1≦S2/S1≦0.4; 100 Torr×mm≦pd≦400 Torr×mm; and 0.2 mm≦d, where S1 is an area of a projection of a space occupied by one discharge cell onto the front substrate, S2 is an area of a portion of the front substrate for projecting light from the discharge cell, p is a pressure of the discharge gas, and d is a distance between the electrodes.
Abstract:
A plasma display panel design having a display area and a peripheral area surrounding the display area. Within the display area are discharge cells, and within the peripheral area are dummy cells that serve as a location where fluorescent paste is injected onto in an early stage of making the display, enabling the injection amount and injection speed from a nozzle to stabilize before the fluorescent material is deposited into the discharge cells. A surface area that the fluorescent material is deposited on in the peripheral area is increased to provide for a more rapid stabilization of the injection pressure and injection amount of the paste in the making of the display. A sufficient gap is present between a sealant and the dummy structure so that air and foreign matter can be expelled.
Abstract:
A plasma display device disclosed herein is capable of enhancing the contrast of external light, facilitating application of phosphor paste on the bottom of each space surrounded by lattice-like barrier ribs, and reducing a variation in the amount of the phosphor paste applied as much as possible. The lattice-like barrier ribs include lateral ribs extending along a first direction while being nearly in parallel to each other, and vertical ribs extending along a second direction different from the first direction while being nearly in parallel to each other. Each of the lateral ribs is composed of two or more rows of rib elements. Notches for communicating spaces surrounded by the vertical ribs and the lateral ribs to each other in the first direction and/or the second direction are formed at least in portions of the vertical ribs and/or the lateral ribs.
Abstract:
A plurality of row electrode pairs and a dielectric layer are formed on a front glass substrate. A plurality of column electrodes forming discharge cells at the intersections with the row electrode pairs in a discharge space is formed on one of a back glass substrate and the front glass substrate. Each of the discharge cells is defined and separated from another discharge cell adjacent thereto in the column direction by a transverse wall of the partition wall provided between the front glass substrate and the back glass substrate. A black- or dark-colored light absorption layer facing the front glass substrate is formed in each non-light emission area including the transverse walls in the discharge space.
Abstract:
A plasma display panel includes first and second substrates, address electrodes formed on the first substrate, display electrodes formed on the second substrate, barrier ribs formed between the first and second substrates to define discharge cells, each of which acts as a subpixel, and phosphor layers deposited in the discharge cells to form red, green, and blue subpixels. The ends of each subpixel have a first width, and a center area of each subpixel has a center width. The center area of one of the red, green, or blue subpixels is formed having a second width that is smaller than the first width, and the center area of another one of the red, green, or blue subpixels is formed having a third width that is larger than the first width.
Abstract:
The present invention relates to a plasma display panel including a first substrate having a plurality of address electrodes and a dielectric layer, a second substrate, which is opposed to the first substrate, having a plurality of display electrodes, a dielectric layer, and a protection layer, barrier ribs formed on the first substrate to partition a plurality of discharge cells between the first substrate and the second substrate, a red, a green, and a blue phosphor layer formed inside of each discharge cell partitioned by the barrier ribs, and a layer for decreasing reflective brightness, which is formed on the upper-end surface of the barrier ribs, and comprises calcium magnesium silicate based blue phosphor.