Abstract:
The present invention relates to a plasma display panel, more particularly to a plasma display panel including an address electrode. A plasma display panel according to the present invention comprises a scan electrode comprising at least one a first hole disposed in the area protruding to the center of a discharge cell; a sustain electrode comprising at least one a second hole disposed in the area protruding to the center of a discharge cell; and an address electrode comprising a third hole formed corresponding to at least one of the first hole or the second hole. The present invention implements an address electrode corresponding to a transparent electrode to enlarge the overlapping size between the two electrodes for improving jitter characteristic and providing two pad transparent electrode having a high efficiency.
Abstract:
Disclosed is a rear plate of a plasma display panel. In the rear plate, barrier ribs are formed by etching a baked barrier rib layer, so that the completed barrier ribs have no deformation and the electrodes can be exactly located at central portions between the barrier ribs. In a PDP having a front plate to a rear plate attached to each other, the PDP shows improvements in both optical characteristics, such as average brightness, color temperature, and contrast, and electric characteristics, such as voltage margin, power consumption, and efficiency.
Abstract:
A plasma display panel comprises: first and second substrates facing each other; a plurality of barrier ribs partitioning a discharge space between the first and second substrates so as to define a plurality of discharge cells; address electrodes extending in parallel with each other and in a predetermined direction; first and second electrodes disposed on the second substrate in a direction intersecting the direction of the address electrodes, the first and second electrodes being separated from the address electrodes, the first and second electrodes being provided in correspondence with each of the discharge cells; and phosphor layers coated on the discharge cells. The first and second electrodes protrude in a direction from the second substrate to the first substrate, and face each other so as to provide a space therebetween.
Abstract:
A plasma display panel. The plasma display panel includes a first substrate made of a transparent material, a second substrate opposite to the first substrate, a first barrier rib being arranged between the first substrate and the second substrate, defining discharge cells together with the first and second substrates, and being made of a dielectric material, upper discharge electrodes being arranged within the first barrier rib and surrounding the discharge cells, lower discharge electrodes being arranged within the first barrier rib, separated from the upper discharge electrodes by a predetermined gap, and respectively being vertically symmetrical with the upper discharge electrodes, and a phosphor layer being arranged in the discharge cells.
Abstract:
A plasma display panel including a first substrate and a second substrate opposing one another with a predetermined gap therebetween, address electrodes formed along a first direction on the first substrate, and barrier ribs mounted in the gap between the first and second substrates and defining a plurality of discharge cells. First electrodes and second electrodes are formed on the second substrate along a second direction, which crosses the first direction. The address electrodes include expanded segments with an enlarged width in areas corresponding to the discharge cells, and indented segments that are indented at areas corresponding to gaps between the first electrodes and the second electrodes.
Abstract:
A PDP (plasma display panel) includes: a front substrate; a rear substrate arranged opposite to the front substrate; front barrier ribs arranged between the front substrate and the rear substrate and formed of a dielectric material, the front barrier ribs partitioning discharge cells together with the front and rear substrates; front and rear discharge electrodes arranged within the front barrier ribs to surround the discharge cells, and extended in parallel along discharge cells of one row; address electrodes extended along discharge cells of another row intersecting with a row of the discharge cells where the front and rear discharge electrodes are arranged; phosphor layers arranged within the discharge cells; and a discharge gas injected in the discharge cells, in which the address electrode includes discharge portions formed in a loop shape disposed at the discharge cells and connecting portions connecting the discharge portions.
Abstract:
The invention relates to an AC plasma display panel (12) of the surface discharge type, and more specifically to the structure of the address electrodes (5) of the panel and of the phosphor elements, and to a plasma display panel device comprising such a panel. According to the invention, only one address electrode (5) is used for one out of every two columns. Scan electrodes (8) and common electrodes (7) may comprise transparent parts (11). These parts (11) may extend over one out every two cells in a checkerboard fashion. In a preferred embodiment, the columns may have alternating wide (15) and narrow (16) cells (2). Furthermore, each cell has a neighbor-cell of the same color on the same address electrode but in a neighboring column and in a neighboring row. The display panel device comprises a driving circuit (22) arranged such that in at least one of the sub-fields the neighboring cells are addressed simultaneously.
Abstract:
A plasma display panel provides increased brightness over an entire screen while simultaneously reducing power consumption. The plasma display panel includes a rear substrate, a plurality of address electrodes disposed parallel to each other on the rear substrate, a first dielectric layer covering the address electrodes, light emitting cells defined by a barrier rib formed on the first dielectric layer and covered with fluorescent substance, a front substrate, a plurality of sustain electrode pairs, each of which includes a scan electrode and a data electrode and disposed on the front substrate and intersecting the address electrodes, and a second dielectric layer covering the sustain electrode pairs. The parts of the address electrodes which intersect the address electrodes are defined as discharging portions, and areas of subsequent discharging portions are larger than areas of preceding discharging portions.
Abstract:
The invention provides a plasma display panel including a number of first display units and a number of second display units, wherein the first and second display units are composed of plural sustaining electrodes, scanning electrodes, data electrodes. The sustaining electrodes and scanning electrodes form at least two adjacent electrode combinations, namely the first electrode combination and the second electrode combination, wherein each electrode combination includes one sustaining electrode and one scanning electrode. Data electrodes are disposed along a direction approximately orthogonal to these sustaining electrodes and scanning electrodes. The first display unit corresponds to the first primary color and is controlled by the first data electrode and the first electrode combination while the second display unit corresponds to the second primary color and is controlled by the first data electrode and the second electrode combination. The first display unit and the second display unit are adjacent and alternately arranged.
Abstract:
A plasma display panel comprises a front substrate and a rear substrate, a plurality of row electrode pairs provided on the inner surface of the front substrate, a dielectric layer provided on the inner surface of the front substrate for coverring the row electrode pairs, a plurality of column electrodes provided on the inner surface of the rear substrate, a partition wall assembly provided between the front substrate and the rear substrate, said partition wall assembly including a plurality of longitudinal partition walls and a plurality of lateral partition walls, forming a plurality of discharge cells. In particular, the dielectric layer has a plurality of projection portions located corresponding to and protruding toward the lateral partition walls of the partition wall assembly, in a manner such that there would be no slots formed between the dielectric layer and the lateral partition walls.