摘要:
A multi-layer, microporous polyethylene membrane comprising (a) a first microporous layer made of a polyethylene resin, and (b) a second microporous layer comprising a polyethylene resin, and a heat-resistant polymer having a melting point or a glass transition temperature of 170° C. or higher, the heat-resistant polymer being dispersed in the form of fine particles in the polyethylene resin, and the second microporous layer having pores containing fine particles of the heat-resistant polymer as nuclei from which the cleavage of polyethylene resin fibrils starts, the multi-layer microporous polyethylene membrane having well-balanced shutdown properties, meltdown properties, permeability, mechanical strength, heat shrinkage resistance and compression resistance.
摘要:
A partially degradable polymeric fiber includes a thermally degradable polymeric core and a coating surrounding at least a portion of the core. The thermally degradable polymeric core includes a polymeric matrix including a poly(hydroxy-alkanoate), and a metal selected from the group consisting of an alkali earth metal and a transition metal, in the core polymeric matrix. The concentration of the metal in the polymeric matrix is at least 0.1 wt %. The partially degradable polymeric fiber may be used to form a microvascular system containing one or more microfluidic channels.
摘要:
A nonwoven web of fibers that have a number average diameter of less than 1 micron. The web can have a Poisson Ratio of less than about 0.8, a solidity of at least about 20%, a basis weight of at least about 1 gsm, and a thickness of at least 1 micrometer.
摘要:
A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm−1 and a Raman shift of 1580 cm−1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
摘要:
A method for reducing the self discharge rate and the variability in the self discharge rate of an electrochemical cell wherein a porous separator is inserted between a cathode and an anode of the cell and the porous separator contains a nanoweb that comprises a plurality of nanofibers that may contain a fully aromatic polyimide and the fully aromatic polyimide has a degree of imidization of greater than 0.51 where degree of imidization is the ratio of the height of the imide C—N absorbance at 1375 cm−1 to the C—H absorbance at 1500 cm−1.
摘要:
The present application provides a nonaqueous electrolyte secondary battery that includes, a cathode capable of being electrochemically doped/dedoped with lithium, an anode capable of being electrochemically doped/dedoped with lithium, and an electrolyte placed between the cathode and the anode, wherein the electrolyte contains at least one of fluoro ethylene carbonate represented by Chemical Formula (1) and difluoro ethylene carbonate represented by Chemical Formula (2) as a solvent and the ratio of a discharge capacity B during discharging at a 5C rate to a discharge capacity A during discharging at a 0.2C rate ((B/A)×100) is 80% or more.
摘要:
The invention relates to a process for producing a rechargeable electrochemical metal-oxygen cell, comprising at least one positive electrode, at least one negative metal-comprising electrode and at least one separator having two sides for separating the positive and negative electrodes, wherein, in one of the process steps, at least one side of the separator is coated with at least one material for forming one of the two electrodes (hereinafter referred to as electrode material) or at least one side of at least one of the two electrodes is coated with at least one material for forming the separator (hereinafter referred to as separator material) to form a separator-electrode assembly.
摘要:
Embodiments are described in terms of selective methods of sealing separators and jellyroll electrode assemblies and cells made using such methods. More particularly, methods of selectively heat sealing separators to encapsulate one of two electrodes for nickel-zinc rechargeable cells having jellyroll assemblies are described. Selective heat sealing may be applied to both ends of a jellyroll electrode assembly in order to selectively seal one of two electrodes on each end of the jellyroll.
摘要:
A lead-acid battery improving the charge acceptance in an initial stage, suppressing the decrease of the charge acceptance for a long time use of the battery and having a long life is provided. In a lead-acid battery using a paste type negative plate prepared by filling a past form negative active material using a lead powder as a starting material in a collector made of a lead alloy, a flake graphite and a condensate of bisphenols and aminobenzene sulfonic acid are contained in the negative active material. The average primary particle diameter of the flake graphite is 10 μm or more and 220 μm or less, preferably, 100 μm or more and 220 μm or less. The content of the flake graphite is preferably from 0.5 mass parts to 2.7 mass parts and, more preferably, from 1.1 mass parts to 2.2 mass parts based on 100 mass parts of the negative active material (spongy metallic lead) in a fully charged state.
摘要:
The present invention refers to a separator for an electrochemical device and an electrochemical device having the same. More specifically, the separator of the present invention comprises a porous substrate; a first porous coating layer formed on one surface of the porous substrate and comprising a mixture of inorganic particles and a first binder polymer; and a second porous coating layer formed on the other surface of the porous substrate and comprising a product obtained by drying a mixture of a solvent, a non-solvent and a second binder polymer.Such separator of the present invention can have good thermal safety due to a porous organic-inorganic coating layer formed on one surface thereof, and superior adhesiveness due to a porous coating layer made of a binder thin film formed by applying and drying a mixture of a binder polymer and a non-solvent on the other surface thereof. Also, the separator can have a decreased thickness to reduce the resistance of electrochemical device and improve the capacity thereof.