Abstract:
The present invention is related to methods of packaging optical nonlinear crystal with a periodically domain inversion structure (e.g. periodically poled MgO doped lithium niobate) which is bonded with a laser crystal (e.g. Nd doped YVO4) and to achieve efficient second harmonic generation in an intra-cavity configuration.
Abstract:
For a diode pumped solid-state laser, measures to improve the pump light absorption in anisotropic crystals are proposed. The proposed measures reduce the dependency of the pump light absorption on the diode current and the diode temperature as well as on the detuning of the pump diode from the absorption line. These measures include sending the pump radiation twice through the crystal, placement of the laser crystal in an orientation that does not exhibit the optimum absorption and the use of a retarder.
Abstract:
A wavelength conversion laser device includes a solid-state laser element having a waveguide structure including a laser medium that amplifies laser beams by providing a gain generated due to absorption of pump light to the laser beams and outputs a fundamental wave, and a wavelength conversion element having a waveguide structure including a nonlinear optical material that converts a part of a fundamental wave output from the solid-state laser element to a second harmonic, to resonate the fundamental wave by an optical resonator structure including the solid-state laser element and the wavelength conversion element and outputs a second harmonic from the wavelength conversion element. The solid-state laser element outputs a linearly polarized fundamental wave, and differentiates a polarization state of a fundamental wave having passed through the wavelength conversion element and entering into the solid-state laser element from linear polarization output from the solid-state laser element, so that wavelength conversion efficiency of the wavelength conversion element is not decreased in a peak wavelength of a gain band.
Abstract:
The configurations of an electro-optic Bragg deflector and the methods of using it as a laser Q-switch in a Q-switched laser and in a Q-switched wavelength-conversion laser are provided. As a first embodiment, the electro-optic Bragg deflector comprises an electrode-coated electro-optic material with one of a 1D and a 2D spatially modulated electro-optic coefficient. When a voltage is supplied to the electrodes, the electro-optic material behaves like a Bragg grating due to the electro-optically induced spatial modulation of the refractive index. The second embodiment relates to an actively Q-switched laser, wherein the electro-optic Bragg deflector functions as a laser Q-switch. The third embodiment of the present invention combines the Q-switched laser and a laser-wavelength converter to form a Q-switched wavelength-conversion laser, wherein the EO Bragg deflector can be monolithically integrated with a quasi-phase-matching wavelength converter in a fabrication process.
Abstract:
A laser is provided, suitable for use in laser displays, having a laser cavity defined by at least first and second mirrors, a lasing material positioned in an optical path within the cavity with an associated pumping source and wherein one of the mirrors has a reflective surface that is moveable so as to alter the length of the cavity at a rate sufficiently high to ensure that effects due to a speckle pattern, as perceived by an observer or detector of light generated by the laser, are reduced while preserving the instantaneous coherence of the laser light. Sufficiently rapid movement of the mirror surface ensures that any speckle pattern changes at a faster rate than can be detected by the human eye or by a detector so that speckle is no longer visible, or is at least considerably reduced.
Abstract:
A wavelength conversion laser device includes a solid-state laser element having a waveguide structure including a laser medium that amplifies laser beams by providing a gain generated due to absorption of pump light to the laser beams and outputs a fundamental wave, and a wavelength conversion element having a waveguide structure including a nonlinear optical material that converts a part of a fundamental wave output from the solid-state laser element to a second harmonic, to resonate the fundamental wave by an optical resonator structure including the solid-state laser element and the wavelength conversion element and outputs a second harmonic from the wavelength conversion element. The solid-state laser element outputs a linearly polarized fundamental wave, and differentiates a polarization state of a fundamental wave having passed through the wavelength conversion element and entering into the solid-state laser element from linear polarization output from the solid-state laser element, so that wavelength conversion efficiency of the wavelength conversion element is not decreased in a peak wavelength of a gain band.
Abstract:
A light source device includes: a light source unit configured to emit light; a wavelength conversion element configured to convert the wavelength of light emitted from the light source unit; a light source housing configured to accommodate at least the light source unit and the wavelength conversion element; and a temperature control unit configured to control temperature of the wavelength conversion element. The temperature control unit is disposed outside the light source housing.
Abstract:
A compact solid-state laser array for nonlinear intracavity frequency conversion into desired wavelengths using periodically poled nonlinear crystals. The crystals contain dopants such as MgO and/or have a specified stoichiometry. A preferred embodiment comprises a microchip laser cavity that includes a solid-state gain chip, such as Nd:YVO4, which also provides polarization control of the laser; and a periodically poled nonlinear crystal chip such as PPMgOLN, for efficient frequency doubling of a infrared laser pump beam into the visible wavelength range. The described designs are especially advantageous for obtaining low-cost green and blue laser sources. The use of such high-efficiency pumps and nonlinear materials allows scaling of a compact, low-cost architecture to provide high output power levels in the blue/green wavelength range.
Abstract:
A mode-locked laser device includes a Fabry-Perot resonator, a mode-locking element disposed within the resonator, a solid-state laser medium disposed within the resonator, and exciting means for applying excitation light to the solid-state laser medium. The opposite ends of the resonator, the mode-locking element and the solid-state laser medium are disposed to provide an average beam diameter of lasing light of not more than 150 μm on the mode-locking element and an average beam diameter of the lasing light of not more than 200 μm within the solid-state laser medium.
Abstract:
The invention describes techniques for the control of the spatial as well as spectral beam quality of multi-mode fiber amplification of high peak power pulses as well as using such a configuration to replace the present diode-pumped, Neodynium based sources. Perfect spatial beam-quality can be ensured by exciting the fundamental mode in the multi-mode fibers with appropriate mode-matching optics and techniques. The loss of spatial beam-quality in the multi-mode fibers along the fiber length can be minimized by using multi-mode fibers with large cladding diameters. Near diffraction-limited coherent multi-mode amplifiers can be conveniently cladding pumped, allowing for the generation of high average power. Moreover, the polarization state in the multi-mode fiber amplifiers can be preserved by implementing multi-mode fibers with stress producing regions or elliptical fiber cores These lasers find application as a general replacement of Nd: based lasers, especially Nd:YAG lasers. Particularly utility is disclosed for applications in the marking, micro-machining and drilling areas.