Abstract:
A method for quantification of the desynchronization between the clocks of two medical devices communicating wirelessly, for example, by HBC signals. The devices are separately clocked by slow clocks (CLK1/32k, CLK2/32k) and include selectively activated fast clocks (CLK1/10M, CLK2/10M). The method comprises: a) on a predetermined transition (T1) of a slow clock, transmission by one device of a synchronization query signal (SYNC) to the other device, b) counting of the pulses of the activated fast clock to detect a predetermined transition (T3) of the first slow clock, then c) transmitting from the other device to the first device a response signal (D1) and d) upon reception of the response signal, computing a temporal shift (OFFSET) according to the result (D1, D2) of the counting of the pulses of the fast clock. Two fast clocks, one on each device, also can be used.
Abstract:
A system, method, and optical switch for communicating timing. A determination is made whether one of a number of data streams are available. Packets are received at a remote node in response to determining one of the number of data streams is available. A timing characteristic of the at least one of the packets is associated with a tick of a reference clock. The tick of the reference clock is extracted utilizing the timing characteristic of the at least one of the packets. A secondary clock is disciplined with the reference clock by adjusting the secondary clock based on a difference between times measured by the reference clock and the secondary clock to generate a clock signal. The clock signal is communicated to one or more interfaces for distributing.
Abstract:
A relatively simple protocol for transferring files and other data between endpoints. The endpoints are a host electronic device and a client electronic device. The connection between the end points can utilize a reliable stream transport connection. Communication is accomplished utilizing packets that have a header and a body with information to be used in transmitting data between the end points. Various packet types are utilized to achieve data transfer.
Abstract:
The present invention relates to a method of searching a code sequence in a cell based mobile communication system, by which a receiving side is able to code sequence detection efficiently. In a code sequence transmitting method for an efficient code sequence search in a mobile communication system, the code sequence transmitting method includes a step of boosting at least one tone for a code sequence and a step of transmitting the code sequence having the boosted at least one tone to a receiving side.
Abstract:
Disclosed is an uplink synchronization method of a base station according to the present invention includes receiving an initial access signal from a terminal; obtaining an uplink synchronization using the received initial access signal; informing the terminal about obtainment of the uplink synchronization; and receiving a data signal from the terminal. According to the present invention, a marine wireless communication system may efficiently perform uplink synchronization between the base station and the terminal, and may efficiently operate wireless resources.
Abstract:
The invention provides a method and a system for determining an end time of uplink back propagation in a mobile communication system to solve a problem of accurately judging the end time of uplink back propagation, wherein the method includes the following steps: sending data with consecutive sequence numbers in a buffer of a packet data convergence protocol (PDCP) module to a serving gateway (S-GW) via an S1 tunnel; sending data with inconsecutive sequence numbers, which is from data with a first inconsecutive sequence number to last data in the buffer of the PDCP module, to a target base station via an uplink back propagation tunnel; generating an end marker datagram; sending the end marker datagram to the target base station via the uplink back propagation tunnel; and receiving, by the target base station, the end marker datagram and determining that the uplink back propagation has ended.
Abstract:
A multi-interface bus allows for different bus standards to be implemented over the same set of physical bus lines. More particularly, in one implementation, the system includes a first circuit board, a second circuit board, and a bus connecting the first and second circuit boards. The second circuit board is configured to communicate with the first circuit board using either a synchronous or an asynchronous bus protocol determined based on a bus protocol used by the first circuit board.
Abstract:
A wireless communication system broadcasts a control signal at a first frequency band from a base station and allocates additional frequency band(s) for transmitting data via terminal(s). A control signal at the first frequency band indicates the location of the additional frequency band(s) and is not transmitted over the additional frequency band(s). Wireless data transmission is simultaneously performed over the first frequency band and the additional frequency band(s). Each terminal receives the control signal, which is used in time-synchronizing frames between the wireless data transmission at the first frequency band and the wireless data transmission at the additional frequency band(s). The control signal also includes control data for managing wireless data transmission between the base station and the terminal(s) at the first frequency band, and is utilized instead of a control signal at the additional frequency band(s).
Abstract:
In one method embodiment, receiving from the network device a multiplex of a compressed video stream and a compressed audio stream, the multiplex comprising a succession of intervals corresponding to a video program corresponding to a first playout rate; and at the start of each interval, replacing the compressed audio stream with a compressed, pitch-preserving audio stream corresponding to a second playout rate different than the first.
Abstract:
In a wireless communication system, a central control unit 31 comprises a synchronizing means for synchronizing a frame for an base station-mobile station communication with that for an inter-mobile station direct communication based on control information used for the base station-mobile station communication, when a second frequency is used for the inter-mobile station direct communication which is different from a first frequency used for the base station-mobile station communication. The central control unit 31 also comprises an allocation means for allocating a band and a frequency for the inter-mobile station direct communication in accordance with an allocation request from a base station 30 or a mobile station 40. Frames for the base station-mobile station communication and the inter-mobile station direct communication are synchronized by utilizing control information 55 for the base station-mobile station communication instead of the conventional control information provided by the mobile station. The system allows a base station-mobile station communication to take place even when an inter-mobile station direct communication is conducted at a frequency other than that of the base station. As the base station controls the inter-mobile station direct communication, the burden on the mobile stations can be reduced, and a single base station can use multiple frequencies simultaneously.