Abstract:
Methods and apparatus for enhanced delivery of content over a data network. In an aspect, a method is provided for transmitting services over a network. The method includes receiving one or more services having associated delivery requirements, determining that network bandwidth is available to meet the delivery requirements, and allocating the network bandwidth to the one or more services based on the delivery requirements to produce network bandwidth allocations. In an aspect, an apparatus is provided that includes receiving logic configured to receive one or more services having associated delivery requirements, and multiplexer logic configured to determine that network bandwidth is available to meet the delivery requirements, and to allocate the network bandwidth to the one or more services based on the delivery requirements to produce network bandwidth allocations.
Abstract:
An apparatus and method for adjusting bandwidth utilisation between a group of different participating users accessing client terminals in a common media event in a computer network. The apparatus includes a distributing unit which distributes address information and bandwidth limitation to the users connectable via the computer network to the media event from their respective client terminals. The distributing unit is hosted from a central administration entity and connecting links connect each client terminals of participating users via the Internet or other global interconnecting network to the distributing unit. Measurement elements are provided in association with the client terminals to measure incoming data streams from other users. The distributed bandwidth limitation is provided to the client terminals to allow them to compare incoming data streams, in response to which the terminals autonomously adjust their amount of transmission to a level that allows for optimal utilisation of available resources during transmission.
Abstract:
A method for efficiently allocating a bandwidth at an optical line terminal (OLT) for upstream transmission in an Ethernet passive optical network (EPON) system. An optical network unit (ONU) divides data to be transmitted into at least two groups that include a group with a constant bit rate (CBR) and a group with a variable bit rate (VBR), and requests a required bandwidth for each of the divided groups. The OLT allocates the requested bandwidth to the group with the CBR within a first bandwidth among an allocated bandwidth including the first bandwidth and a second bandwidth. The ONU transmits data using bandwidth allocated to the divided groups by the OLT.
Abstract:
A method of providing network access across a shared communications medium between competing users includes the steps of monitoring network access usage by each user for a past time interval and, based on the monitored network access usage, allocating network access for each user during a future time interval. Features include forecasting network access that will be utilized or requested by users in a future time interval, and prioritizing the users for allocating network access to the users.
Abstract:
Systems of and methods for providing cellular priority access and topological guidance information to cellular users are described, employing wireless ad hoc network and cellular logic. A centralized aspect of acquiring cell loading information and geographic coordinates is combine with a distributed scatternet forming aspect to enable guidance information to be computed and indicated to the user. The guidance information is reflective of cell loading and congestion status of neighboring cells, as well as the availability of alternative radio resources in the user's current cell or neighboring cells. The system may also be employed in re-distributing cell traffic among cells to optimally balance cell loads.
Abstract:
A long-term usage profile and a congestion state metric are used to determine QoS treatment to apply to packets corresponding to a given network user. A user's historical long-term use, measured over one or more periods of time, is used to generate a profile that is compared to one or more predetermined usage threshold level(s). If the usage profile, either singular or composite corresponding to whether one or more than one measurement is used respectively, exceeds the threshold(s), QoS treatment is applied to service flow bytes according to the comparison results during times of network channel congestion. Congestion metrics are determined based on a count of the number of bytes dropped during a congestion measurement window. Either the count itself or the count rate of change combined with the count are compared to a congestion threshold. If the measured/derived values exceed a congestion threshold, the channel is deemed congested.
Abstract:
A method of providing network access across a shared communications medium between competing users includes the steps of allocating to users network access for a future time interval, and then reallocating network access to the users during a succeeding time interval. The level of network access allocated to each user for each time interval is determined in accordance with fairness considerations, contractual provisions regarding network access, forecasted network access that will be utilized, forecasted network access that will be requested, and combinations thereof. In making the user allocations, the users are grouped within classes and the classes first are allocated network access and, then, the users within each class are allocated network access from the respective class allocation. The user allocations determine user allowances of network access representing limits on the amount of network access users can consume in a time interval.
Abstract:
A hierarchical bandwidth management model for multiservice networks that provide management at a transport level and at a service/application level to provide increased network scalability without sacrificing bandwidth management efficiency and flexibility. In particular, in an Multiprotocol Label Switching (MPLS) environment, a method of hierarchical bandwidth management in a multiservice network supporting various quality of service levels (e.g. EF, AF1, AF2, BE) and a number of applications (e.g. ATM, MPLS, IP, FR) is disclosed. The method includes the steps of: establishing a transport connection tunnel (e.g. an E-Label Switched Path(LSP)) between pairs of the edge nodes in the network; and managing bandwidth of the transport connection tunnel among the quality of service levels and the applications. In an exemplary embodiment the invention also provides a hierarchical admission structure: one at a transport level for the label switched paths and one at a service level for user/application connections. The hierarchical bandwidth management model (exemplified in a method and an apparatus) provides the ability to share and/or partition bandwidth by application and quality of service and the ability of customer-controlled trade-off of bandwidth guarantee (per application/QoS) and network efficiency (i.e. low fragmentation).
Abstract:
A transceiver and method for communicating over a communications channel having a plurality of subchannels are described. In particular, the transceiver is capable of dynamically switching between communicating data for a first active application set and communicating data for a second different active application set. An active application set is defined as the set of one or more active applications for which the transceiver is currently communicating data. As part of communicating data for the first active application set, the transceiver allocates the subchannels to the one or more applications in the first application set. The transmission requirements of the first active application set defines a first communication state of the transceiver. When the transceiver dynamically transitions to communicating data for the second different application set, the transceiver reallocates the subchannels to the one or more applications in the second different application set. The transmission requirements of the second different active application set defines a second communication state of the transceiver.