Abstract:
An optical scanning device includes a light source, a deflector, and an image-forming optical system. The deflector includes a deflecting surface for deflecting light beams in a main scanning direction. The image-forming optical system includes two relay lenses having a positive power in the main scanning direction. The relay lenses cause main light beams of light beams emitted from the light source to cross near the deflecting surface in the main scanning direction.
Abstract:
In a disclosed optical scanner, an optical axis adjustment is made by moving a circuit board on which a light emitting device open-type semiconductor laser is mounted along a base face of an optical box. For a high-quality optical scanning, the circuit board is attached to the base face of the optical box. The invention provides a light emitting element open-type in which a semiconductor laser is disposed in an optical box which is almost hermetically sealed with a cover to avoid adhesion of dusts, electrostatic destroy, and deterioration in picture quality.
Abstract:
A display apparatus includes a display panel 110 including a light emitting device 120 for each of a plurality of pixels, and a light receiving device 130 provided on the display panel 110 for each of the plurality of pixels. The display panel 110 displays an image by using light output from the light emitting device 120 toward the panel front side. The light receiving device 130 receives a portion of light output from the light emitting device 120 toward the panel back side that is reflected by an irradiated object 10 located on the panel back side. Since the light used for displaying an image and the light used for reading an image are commonly output from the light emitting device 120, it is possible to display and read image information with a simple, thin and light-weight structure.
Abstract:
An image scanning unit includes at least two lens groups for imaging a reflected image of a manuscript on a lined photoelectric conversion element (12), lens barrels (14, 15) for holding the lenses, respectively, and constituting an imaging lens system (16), a base member (10) on which the lined photoelectric conversion element (12) and the lens barrels (14, 15) are disposed, and intermediate holding members (13, 19) for mounting at least one of the lens barrels (14) and the lined photoelectric conversion element (12) on the base member (10).
Abstract:
In a disclosed optical scanner, an optical axis adjustment is made by moving a circuit board on which a light emitting device open-type semiconductor laser is mounted along a base face of an optical box. For a high-quality optical scanning, the circuit board is attached to the base face of the optical box. The invention provides a light emitting element open-type in which a semiconductor laser is disposed in an optical box which is almost hermetically sealed with a cover to avoid adhesion of dusts, electrostatic destroy, and deterioration in picture quality.
Abstract:
The present invention relates to a scanning method, more particularly, to a two-directions scanning method by using a user interface (UI). At first, a scanning mode is chosen and the first dpi (dots per inch) of the preview procedure is set in the user interface. Then an instruction is keyed in the user interface to make a scan head move along the first scanning direction by using the first dpi and start the first scanning procedure. The first scanning procedure is a preview procedure. After finishing the first scanning procedure, a user can view the first image, which is got from the first scanning procedure, on a monitor and the scan head moves along the second scanning direction by using the second dpi to start the second scanning procedure. The second image data, which is got from the second scanning procedure, is saved in a memory. The second dpi is usually the highest dpi of the scan head. Following the needs of the user, the second dpi can be preset in the user interface to increase the scanning rate of the second scanning procedure. After the user selects a scope of the first image, which he or she wants to get, and the third dpi is set, the user interface will get the partial second image, which is corresponding to the scope of the first image that is selected by the user, by using a program to adjust a graph image coordinate and a dpi scale. At last, the third image, which is got according to the third dpi and the scope of the first image that he or she wants to get, is shown on the monitor.
Abstract:
A compact, low-cost photographic film scanner particularly adapted to scanning Advance Photo System (APS) film includes an imaging assembly having an elongated L-shaped housing with a photosensor, e.g. a CCD, mounted directly to one end of the housing, the other end having a scanning aperture and film rails integrally formed on the housing, the film rails defining a film plane over the scanning aperture. The housing comprises a two piece snap together configuration that provides support for the focusing lens as well the photosensor and film scan gate. Additionally, the housing includes support arms that receive and lock in place an LED illuminant head assembly. The imaging apparatus housing conveniently snap locks into place on the scanner chassis in an opening formed in the film drive path.
Abstract:
A hand-held scanning device is disclosed in which the scanning device housing window is located such that it does not come into contact with the object being scanned while a scan is being performed. This location of the window eliminates window damage caused by contact with the object being scanned. This location also results in the window being located out of the focus area of the scanning device optical system. Accordingly, any defects occurring in the window will be out of focus and, thus, less detrimental to acquired image quality. A light source lens may be integrally formed in the same assembly as the window and this assembly may provide support for the light source.
Abstract:
An image sensor includes: a lens configured to focus light irradiated toward an object to be read and reflected by the object to be read; a sensor configured to receive light focused by the lens; a sensor board configured to mount thereon the sensor; a board retaining plate, having a casing attachment surface extending in the X direction and a sensor board attachment reference surface that is in contact with the +Y side of the sensor board and is formed in a side surface of the casing attachment surface, and configured to retain the sensor board; and a first casing configured to fix or retain the board retaining plate by fastening of a surface of the casing attachment surface.
Abstract:
A document reading apparatus includes a sensor configured to receive light from a document, an imaging lens configured to form an image of light from the document on the sensor, a first holding member to which the imaging lens is fixed, and a second holding member to which the sensor is fixed, wherein the first holding member and the second holding member are fixed using an adhesive and solder.