Abstract:
The trailer backup assist system has a human machine interface coupled to a controller having a setup module, a calibration module, an activation module and a control module configured to receive trailer measurements, apply trailer measurements, activate and control vehicle systems to calibrate and implement a curvature control algorithm that controls the reverse movement of the vehicle-trailer combination in a manner consistent with a driver request. When incorrect trailer measurements have been entered, the trailer backup assist system recognizes the error, initiates a warning and requests corrective action to correct the trailer measurements. Default values for a maximum controllable curvature limit and a maximum controllable angle replace the limits calculated and applied by the calibration model that used incorrect trailer measurements, until corrected trailer measurements may be entered by the driver.
Abstract:
A display system for a vehicle and trailer is disclosed. The system comprises an interface configured to receive a directional input and a controller in communication with the interface and a screen. The controller is operable to receive a hitch angle and determine a heading direction of the trailer. The controller is further operable to determine a predicted heading of the vehicle aligned with the trailer based on the hitch angle. The predicted heading of the trailer is then displayed by the controller on the screen.
Abstract:
A trailer backup assist system, according to one embodiment, includes a steering input device for inputting a desired backing path of a trailer. The trailer backup assist system also includes a first sensor that senses a hitch angle between a vehicle and the trailer. Further, the trailer backup assist system includes a second sensor that senses a proximity of an object in a perimeter field of at least one of the vehicle and the trailer. A controller of the trailer backup assist system generates an available set of backing paths for the trailer based on the proximity of the object and the hitch angle. The available set of backing paths does not include backing paths that cross a space occupied by the object or that cause a jackknife condition between the vehicle and the trailer.
Abstract:
A method of controlling a vehicle and trailer assembly comprises initiating an input mode for a trailer backing system. A first set of data points, a second set of data points, and a third set of data points are input into the trailer backing system. The input mode for the trailer backing system is ended. An intended backing path is determined based upon the first, second, and third set of data points.
Abstract:
A trailer backup control system includes a jackknife enabling condition detector and a jackknife counter-measures controller. The jackknife counter-measures controller alters a setting of at least one vehicle operating parameter for alleviating an adverse jackknife condition during backing of the trailer by the vehicle when the jackknife enabling condition detector determines that a jackknife enabling condition has been attained at a particular point in time during backing of the trailer by the vehicle, restricts a trailer backup steering input apparatus and issues a warning to the driver using the trailer backup steering input apparatus.
Abstract:
A controller and control method assists a driver with backing up of a vehicle with an attached trailer. The vehicle has a front axle with steerable front wheels controlled by the driver and a rear axle with non-steerable rear wheels. The trailer has a front axle with non-steerable front wheels and a rear axle with steerable rear wheels controlled by a trailer steering controller. The controller receives an operator-controlled vehicle steering angle and a measured hitch angle. The controller determines a trailer steering angle based on the operator-controller vehicle steering angle and the measured hitch angle. The controller continuously controls the trailer (e.g., via a steering angle of the rear wheels) to maintain a trajectory with substantially no lateral slippage.
Abstract:
The present invention, when used to backed-up a trailer, indicates which direction and how much to steer to steer. The present invention is a method for rapidly determining the predicted direction where the vehicle and trailer become generally in-line. Servomechanisms can be incorporated to enable the vehicle to steer itself while the driver indicates the direction travel desired for the trailer, otherwise a pointer would indicate, for the current position of the vehicle's steering wheel, the predicted direction of the trailer. To back-up the trailer, the driver would turn the vehicle's wheel such that the pointer is kept pointing in the direction of the intended trailer destination. Furthermore, the present invention will indicated the projected directions of the left and right limits to control the direction of the trailer, particularly when maneuvering complex paths.
Abstract:
A towable wheeled vehicle releasably attachable to a towing vehicle at two horizontally spaced apart points provides a frame supporting a deck, a wheel carriage having a leaf spring suspension and a tubular steering axle with rotatable and turnable wheels at each end, and an electrically powered pneumatic system. Airbags communicating between the steering axle and the frame inflate and deflate to axially rotate the steering axle in axle sleeves carried by the leaf spring suspension reversing the caster and camber of the wheels responsive to activation of the towing vehicle's back up lights.
Abstract:
Methods and apparatus are provided for determining the intent of a driver of a motor vehicle in moving a trailer towed by the motor vehicle along a desired path. The method comprises the step of positioning a first reference point at a first location spaced apart from the motor vehicle and sequentially positioning a second reference point at a plurality of way points along the desired point. A signal relative to the motor vehicle, the first reference point, and the plurality of way points is transmitted as the second reference point is positioned at each of the way points. The transmitted signals corresponding to each of the way points are received and are used to determine the position of the plurality of way points relative to the motor vehicle by a process of triangulation. The position of the plurality of way points indicate positions along the desired path.
Abstract:
A vehicle control system that selectively provides rear-wheel steering to prevent a vehicle-trailer from jackknifing during a back-up maneuver. The system senses a steering angle of the vehicle, a speed of the vehicle and a hitch angle between the vehicle and the trailer. The system calculates an equilibrium hitch angle that is a steady-state hitch angle position based on the steering angle and the vehicle speed, and a pseudo-equilibrium hitch angle that is a steady-state hitch angle at a maximum rear-wheel steering input based on the steering angle and the vehicle speed. The system then determines whether the rear-wheel steering should be provided based on a predetermined relationship between the sensed hitch angle, the equilibrium hitch angle and the pseudo-equilibrium hitch angle.