Abstract:
A plasma display panel (PDP) is disclosed which includes a plurality of anodes formed on an upper plate, a plurality of first sustaining electrodes and a plurality of alternating second sustaining electrodes and cathodes formed on a lower plate, and a dielectric coated on the first and second sustaining electrodes and cathodes. A method for driving the PDP includes the steps of initiating a discharge by supplying a potential higher than the discharge firing voltage to the anodes and cathodes, generating a predetermined potential between the cathodes and first sustaining electrodes to increase the voltage generated from the discharge-initiating step, supplying a voltage higher than a discharge sustaining voltage between the first and second sustaining electrodes to maintain the discharge, and supplying a narrow pulse to the cathodes for erasing the discharge.
Abstract:
In a plasma display panel comprising a center glass plate having plurality of openings each containing luminous gas, a pair of outer glass walls on the opposite sides of the center glass plate for sealing the gas and a plurality of electrodes on the outer surfaces of the outer glass walls for exciting the luminous gas, the openings are in the form of blind openings opened on the opposite surfaces of the center glass plates and are sealed with gasses of different discharge colors, thus providing a multicolor display panel.
Abstract:
The present invention belongs to the field of electronic display technology, and relates to a high-resolution display plasma module and a manufacturing method thereof. The high-resolution display plasma module includes a pixel electrode and a transparent electrode. A display plasma is provided between the pixel electrode and the transparent electrode, and a spacer frame is provided around the display plasma. A plasma barrier enclosure array is provided on the pixel electrode. The plasma barrier enclosure array includes a plurality of plasma barrier enclosures arranged in an array. The pixel electrode includes a plurality of pixel electrode units arranged in an array. The plasma barrier enclosure is located on the gap between the pixel electrode units. Each plasma barrier enclosure contains only one pixel electrode unit.
Abstract:
The present invention belongs to the field of electronic display technology, and relates to a high-resolution display plasma module and a manufacturing method thereof. The high-resolution display plasma module includes a pixel electrode and a transparent electrode. A display plasma is provided between the pixel electrode and the transparent electrode, and a spacer frame is provided around the display plasma. A plasma barrier enclosure array is provided on the pixel electrode. The plasma barrier enclosure array includes a plurality of plasma barrier enclosures arranged in an array. The pixel electrode includes a plurality of pixel electrode units arranged in an array. The plasma barrier enclosure is located on the gap between the pixel electrode units. Each plasma barrier enclosure contains only one pixel electrode unit.
Abstract:
A barrier rib paste includes a low-softening point glass powder which contains silicon oxide, aluminum oxide, an alkali metal oxide, and 24 to 37 mol % of boron oxide, and also contains an organic component, wherein the content of an alkali earth metal oxide is 4 mol % or less and the content of zinc oxide is 10 mol % or less.
Abstract:
An object of the invention is to provide a laminate sheet used in forming a dielectric layer exhibiting desired dielectric properties and a rib simultaneously and integrally. Another object of the invention is to provide a method of producing a back substrate for plasma display panel, which is excellent in production efficiency by significantly reducing the production process by using the laminate sheet. A still other object of the invention is to provide a back substrate for plasma display panel produced by the method described above and a plasma display panel using the back substrate. Disclosed is a laminate sheet used for integrally forming a dielectric layer and a rib on a glass substrate having electrodes, wherein a viscoelastic layer containing an inorganic powder is laminated in one side of a glass resin composition layer containing an inorganic powder and a binder resin, and the blast rate in the side of the glass resin composition layer is 2 to 100 times as high as the blast rate in the side of the viscoelastic layer.
Abstract:
A plasma display panel includes front and rear substrates, barrier ribs, a phosphor layer, address, sustain and scan electrodes, and a dielectric layer. Barrier ribs between the front and rear substrates divide the space in between into discharge cells. The sustain and scan electrodes face each other in each discharge cell forming a discharge gap and are asymmetrical with respect to at least one of the center axes of the discharge cell. The dielectric layer covers the sustain and scan electrodes. The distance between the electrodes can be increased and therefore the capacitance between electrodes decreased while maintaining the discharge gap. As a result, reactive power consumption of the panel can be decreased, and distribution of wall charges during the reset period can be controlled even when applying a low voltage of simple waveform to initiate reset.
Abstract:
Sustain electrodes and a transparent dielectric layer covering the sustain electrodes are formed on the rear-facing face of the front glass substrate. A plurality of first additional dielectric layers protrude from the rear-facing face of the transparent dielectric layer, extend in the column direction and are regularly arranged in the row direction. An address electrode initiating a discharge in conjunction with the sustain electrode is formed on each of the first additional dielectric layers.
Abstract:
A plasma display panel comprises: first and second substrates facing each other; a plurality of barrier ribs partitioning a discharge space between the first and second substrates so as to define a plurality of discharge cells; address electrodes extending in parallel with each other and in a predetermined direction; first and second electrodes disposed on the second substrate in a direction intersecting the direction of the address electrodes, the first and second electrodes being separated from the address electrodes, the first and second electrodes being provided in correspondence with each of the discharge cells; and phosphor layers coated on the discharge cells. The first and second electrodes protrude in a direction from the second substrate to the first substrate, and face each other so as to provide a space therebetween.
Abstract:
A plasma display panel and driving method thereof. Waveforms for performing a reset operation, an address operation, and a sustain operation are applied to a scan electrode while a sustain electrode is biased with a predetermined voltage, and it is controlled such that the absolute value of a positive voltage of sustain voltage pulses applied to the scan electrode in the sustain period may be greater than the absolute value of a negative voltage thereof. Further, an address electrode is floated when a waveform having a sustain discharge function is applied to the scan electrode, and the voltage at the address electrode is controlled to be increased and decreased according to the voltage at the scan electrode.