Systems and Methods for Separating Radium from Lead, Bismuth, and Thorium

    公开(公告)号:US20210024365A1

    公开(公告)日:2021-01-28

    申请号:US16894679

    申请日:2020-06-05

    发明人: Matthew J. O'Hara

    摘要: Systems for separating Ra from a mixture comprising at least Ra, Pb, Bi, and Th are provided. The systems can include: a first vessel housing a first media and Th or Bi; a second vessel in fluid communication with the first vessel, the second vessel housing a second media and Pb; and a third vessel in fluid communication with the second vessel, the third vessel housing a third media and Ra, wherein at least one of the first, second, or third medias are different from the other media.
    Methods for separating Ra from Pb, Bi, and Th are provided, the methods can include: providing a first mixture comprising Ra, Pb, Bi, and/or Th; providing a system that can include: a first vessel housing a first media; a second vessel in fluid communication with the first vessel, the second vessel housing a second media; and a third vessel in fluid communication with the second vessel, the third vessel housing a third media; and exposing the first mixture to the first media within the first vessel then, through the fluid communication, exposing the first remainder to the second media in the second vessel, then, through fluid communication, exposing the next remainder to the third media in the third vessel, the exposing separating the Th and Bi from the Ra and Pb, and the Ra from the Pb.
    Methods for separating Ra from being associated with a media are also provided. The methods can include: exposing the Ra and media to a chelating agent to form a mixture comprising the Ra complexed with the chelating agent.

    CHEMICAL REACTORS
    92.
    发明申请

    公开(公告)号:US20210023527A1

    公开(公告)日:2021-01-28

    申请号:US16644272

    申请日:2018-09-04

    申请人: PHARMAFLUIDICS NV

    摘要: A method for producing a chemical reactor device based on a fluid flow comprises obtaining a substrate with a fluid channel defined by a channel wall, in which an ordered set of silicon pillar structures is positioned in the fluid channel and electrochemically anodising at least the silicon pillar structures to make the silicon pillar structures porous at least to a certain depth. After the anodising, the substrate and pillar structures are thermally treated, the treatment being carried out at a temperature, with a duration and in an atmosphere such that any silicon oxide layer formed has a thickness of less than 20 nm. The substrate and the pillar structures are further functionalized.

    METHOD AND SYSTEM FOR CONTROLLED HYPERTHERMIA

    公开(公告)号:US20200345920A1

    公开(公告)日:2020-11-05

    申请号:US16846291

    申请日:2020-04-11

    摘要: Methods and for treatment of cancer and other diseases including complications from late stage viral infections by inducing hyperthermia in a patient relying on withdrawing blood from the patient and returning the withdrawn blood to the patient to establish an extracorporeal flow circuit. Blood is heated by passing through the extracorporeal circuit at a controlled rate until a target body core temperature in is achieved. Usually, the blood will be subjected to a continuously re-circulating dialysis to balance electrolytes. Additionally, the blood will be subjected to a continuously recirculating regeneration through a carbon sorbent column where toxins and contaminants are removed. The blood temperature is maintained at the target blood temperature for a treatment period, and the blood is cooled after the treatment period has been completed. The method can also be effective in treating rheumatoid arthritis, scleroderma, hepatitis, sepsis, the Epstein-Barr virus, and patients with life threatening complications from other viruses, including the COVID-19 virus. A method for removing viruses from the blood supply in an external circuit is also presented.

    STABLE AMMONIA ABSORBENTS
    96.
    发明申请

    公开(公告)号:US20200339434A1

    公开(公告)日:2020-10-29

    申请号:US16759950

    申请日:2018-11-02

    摘要: The present disclosure relates to systems and methods of making ammonia using stable ammonia absorbents. The system and method for producing ammonia, comprises a reactor comprising a catalyst that converts at least a portion of nitrogen feed gas and at least a portion of hydrogen feed gas to ammonia (NH3) forming a reaction mixture comprising the ammonia, unreacted nitrogen, and unreacted hydrogen. An absorber configured to selectively absorb ammonia from the reaction mixture at a temperature of about 180 deg. C. to 330 deg. C. and a pressure of about 1-20 bar, the absorber comprising a solid absorbent. Preferably the solid absorbent is at least one metal halide and a solid support. The unabsorbed ammonium, the unreacted nitrogen, and unreacted hydrogen gas are recycled to the reactor.

    Zeolite syntheses and directing agents

    公开(公告)号:US10807875B2

    公开(公告)日:2020-10-20

    申请号:US16558659

    申请日:2019-09-03

    摘要: The zeolite UTD-1 may be formed under hydrothermal synthesis conditions using a directing agent that does not include a metal atom therein. Methods for synthesizing the zeolite UTD-1 may comprise: combining at least a silicon atom source and a directing agent having a structure of in an aqueous medium; forming the zeolite in the aqueous medium under hydrothermal synthesis conditions, such that the zeolite has a framework silicate with a cationic portion of the directing agent occluded within pores or channels of the framework silicate; and isolating the zeolite from the aqueous medium. The zeolite has a powder x-ray diffraction pattern with at least the following 2θscattering angles: 6.0±0.12, 7.6±0.1, 14.66±0.15, 19.7±0.15, 21.27±0.15, 22.13±0.15, 22.61±0.15, and 24.42±0.10 for a borosilicate form zeolite, or 6.0±0.12, 7.6±0.15, 14.55±0.15, 19.64±0.15, 21.01±0.20, 21.90±0.20, 22.34±0.20, and 24.38±0.20 for an aluminosilicate form zeolite.