Abstract:
Among other things, for use in directional motion of chiral objects in a mixture, a field is applied across the chamber and is rotating relative to the chamber to cause rotation of the chiral objects. The rotation of the objects causes them to move directionally based on their chirality. The method applies to sugars, proteins, and peptides, among other things, and can be used in a wide variety of applications.
Abstract:
This invention is directed to an improvement in the process for the production of alkylaromatic compounds that results in lower levels of residual unreacted materials in the final product. This invention comprises: 1) alkylation of an aromatic compound with an alkylating agent and a catalyst to produce an effluent stream comprising an alkylaromatic compound and unreacted materials; 2) heating the effluent stream; 3) stripping the effluent stream in a stripping device in the presence of steam; 4) separating a stripping stream from the stripping device, the stripping stream rich in unreacted materials; and 5) separating a product stream from the stripping device, the product stream rich in alkylated aromatic compound.
Abstract:
Disclosed are a process and an apparatus for synthesizing nitroalkanes by reaction of a hydrocarbon feedstock with aqueous nitric acid. Energy and capital costs may be reduced by recycling a majority of the aqueous phase back to the reactor.
Abstract:
A process is proposed for distillatively removing dinitrotoluene from process wastewater from the preparation of dinitrotoluene by nitrating toluene with nitrating acid, which comprises basifying the process wastewater to a pH of >8.5, feeding it to a stripping column in the upper region thereof and stripping it with steam in countercurrent to obtain a vapor stream laden with dinitrotoluene and a bottom stream depleted in dinitrotoluene compared to the process wastewater used.
Abstract:
Alkaline waste waters formed in the washing of crude nitrobenzene which has been prepared by the adiabatic nitration of benzene with nitrating acid, washed in an acidic washing process, and then washed in an alkaline washing process are treated. The alkaline waste water being treated generally contains benzene in a concentration of from about 100 to about 3000 ppm and nitrobenzene in a concentration of from about 1000 to about 10,000 ppm. In the process of the present invention, undissolved benzene and/or nitrobenzene are separated from the alkaline waste water, residual benzene and/or nitrobenzene is/are then optionally stripped out of the alkaline waste water, and the alkaline waste water from which benzene and/or nitrobenzene has been removed is heated to a temperature of from 150 to 500° C. under excess pressure with the exclusion of oxygen.
Abstract:
Objectionable byproduct aqueous effluents containing contaminating amounts of hydroxynitroaromatic compounds, in particular those aqueous effluents produced during the synthesis of nitroaromatic compounds, e.g., dinitrotoluenes, via reaction of an aromatic compound with nitric acid in the presence of sulfuric acid, are efficiently, facilely and economically treated/removed by (a) intimately contacting a mixture of at least one nitroaromatic compound and at least one hydroxynitroaromatic compound with an aqueous wash medium containing a neutralizing agent, (b) separating the resulting admixture into an organic phase and an aqueous phase, (c) recycling a fraction of the separated aqueous phase to the aqueous wash medium to thus constitute a portion thereof, and (d) periodically draining a fraction of the wash medium, whether to destruction thereof or to waste.
Abstract:
Dinitrotoluene and isomer mixtures of dinitrotoluene are produced in a single stage, continuous process by nitrating mononitrotoluene or an isomer mixture of mononitrotoluene in which the ortho-mononitrotoluene content is low with a nitrating acid made up of (1) from about 80 to about 100 wt. % inorganic constituents and (2) up to 20 wt. % organic constituents. The inorganic constituents of the nitrating acid include: (a) from about 60 to about 90 wt. % sulfuric acid, (b) from about 1 to about 20 wt. % nitric acid, and (c) at least 5 wt. % water. The organic constituents of the nitrating acid include: from about 70 to about 100% by weight nitrotoluene isomers and up to about 30% by weight nitration by-products. The nitration reaction is carrier out under adiabatic conditions. The molar ratio of nitric acid to mononitrotoluene during the nitration reaction is generally from about 0.7:1 to about 1.4:1. The phases generated during the nitration are subsequently separated and the acid phase is treated to remove at least 5 wt. % of the water present therein. The water may be removed by distillation or flash vaporization, optionally with simultaneous heat supply. After removal of the water, nitric acid having a concentration of from about 50 to about 100 wt. % is added to the treated acid phase in amount sufficient to satisfy the compositional limits for a nitrating acid useful in the process of the present invention. This reconcentrated acid phase is then returned to the nitration reaction.
Abstract:
A process for the preparation and purification of nitroaromatics by nitration of the corresponding aromatics and subsequent melt crystallization. The residual melts which occur are recycled.
Abstract:
The 4,2'-disubstituted diphenyl carbonate or, optionally, ether content of regioimpure mixtures of compounds of formula: ##STR1## where X is F, Cl, and NO.sub.2, can be decreased to essentially zero starting with o-, m- and p-containing regioimpure mixtures by treating with the corresponding m- or p-substituted phenol and, optionally, a decarboxylation catalyst and removing the o-substituted phenol produced by volatilization or recrystallization from a solvent.