Abstract:
A method for synthesizing dissymmetric sulfoether includes the following step: a) under the condition of tetrabutylammonium halide catalysis, compounds having a structure of formula (I), compounds having a structure of formula (II) and salts having sulfur and oxygen are reacted in a solvent to give dissymmetric sulfoether having a structure of formula (III).
Abstract:
The present disclosure relates to a method for continuous preparation of high bulk density methionine crystals. The process of the method is as follows: a hydrolysate solution, which is obtained from a reaction of 5-(β-methylmercaptoethyl) hydantoin and a potassium carbonate solution, is mixed with an external circulation material from a DTB neutralization crystallizer having a gas phase neutralization section; after being cooled, the mixture enters a liquid distributor of a neutralization region in the upper part of the crystallizer and is sprayed in the form of liquid droplet or trickle into carbon dioxide gas for neutralization reaction, and then naturally falls into a crystallization region in the lower part to be mixed with a material in the region; the obtained mixture grows on fine crystals in a system to form crystals having larger particle diameters, and meanwhile new crystal nucleuses are formed; in a deposition area in the middle part of the crystallization region, the crystals having larger particle diameters deposits into an elutriation leg, while the fine crystals circulate with the external circulation material, and a part of the external circulation material is used to elutriate the crystals in the elutriation leg, while another part of the same is used to be mixed with the hydrolysate solution; and the crystals in the elutriation leg are separated, washed and dried to obtain the high bulk density methionine product.
Abstract:
The invention relates to a method for crystallizing D,L-methionine from aqueous solutions and/or suspensions containing D,L-methionine and D,L-methionine ammonium salts, having a Met content of 70-180 g/kg, an NH4+ content of 1-5 g/kg, in the presence of a crystallization additive, which comprises a nonionic or anionic surfactant or a mixture of various nonionic or anionic surfactants, in which the temperature of the solution and/or suspension is lowered directly or stepwise from T1=85-110° C. to T2=30-50° C., so that D,L-methionine precipitates as a solid.
Abstract:
The present invention relates to a new crystalline phase of (3S,3S′) 4,4′-disulfanediylbis(3-aminobutane 1-sulfonic acid) (ABSD) with L-lysine and its use, particularly in the pharmaceutical industry, and to processes for preparation thereof. The invention is also directed to pharmaceutical compositions containing at least one crystalline phase of (3S,3S′) 4,4′-disulfanediylbis(3-aminobutane 1-sulfonic acid) (ABSD) with L-lysine and to the therapeutic or prophylactic use of such crystalline phase and compositions comprising the same.
Abstract:
This invention is directed to an improvement in the process for the production of alkylaromatic compounds that results in lower levels of residual unreacted materials in the final product. This invention comprises: 1) alkylation of an aromatic compound with an alkylating agent and a catalyst to produce an effluent stream comprising an alkylaromatic compound and unreacted materials; 2) heating the effluent stream; 3) stripping the effluent stream in a stripping device in the presence of steam; 4) separating a stripping stream from the stripping device, the stripping stream rich in unreacted materials; and 5) separating a product stream from the stripping device, the product stream rich in alkylated aromatic compound.
Abstract:
Contemplated configurations and methods employ COS hydrolysis and a downstream H2S removal unit to produce a treated feed gas that is then further desulfurized in an absorber using two lean oil fluids. The so produced mercaptan enriched hydrocarbon fluid is fed to a distillation column that produces a light overhead vapor that is preferably combined with the treated feed gas and a sulfur rich bottom product that is in most cases preferably directly fed to a hydrocarbon processing unit comprising a hydrotreater. In further especially preferred aspects, the hydrocarbon processing unit produces at least one and more typically both of the two lean oil fluids, and the treated gas is optionally further processed to produce clean fuel gas in a hydrotreater for olefinic saturation and sulfur conversion using a lean oil recycle for reactor temperature control.
Abstract:
The present invention provides a process for producing methionine, which comprises steps of: hydrolyzing 5-[2-(methylthio)ethyl]imidazolidine-2,4-dione in the presence of a basic potassium compound in a non-stirred continuous first reaction tank, and heat-treating the reaction solution after hydrolysis in a second reaction tank. According to the process of the present invention, a methionine crystal with a higher bulk density can be produced.
Abstract:
This invention relates to a method for obtaining optically pure amino acids, including optical resolution and optical conversion. This method significantly shortens the time taken for optical transformation, and enables the repeated use of an organic solution containing a enantioselective receptor, to thereby obtain optically pure amino acids in a simple and remarkably efficient manner, and to enable the very economical mass production of optically pure amino acids.
Abstract:
A process for isolating a compound of formula (I) or a salt thereof, where X and R1 are as defined in the specification, from a mixture containing it, and the corresponding diacid and dihydroxy derivative, said process comprising (i) adding to an organic solution containing said compounds, water and a one or more salts, all of which are bases selected from a carbonate or hydrogen carbonate base, (ii) separating the aqueous phase containing the compound of formula (II) from the organic phase containing the compounds of formula (I) and (III); then (iii) recovering the compound of formula (I) from remaining organic phase. The process provides for efficient isolation of the target compound, even on a large scale.