摘要:
A prosthetic hip installation system comprising a reamer, an impactor, a tracking element, and a remote system. The tracking element can be integrated into the reamer or impactor for providing tracking data on the position or orientation. Alternatively, the tracking element can be housed in a separate module that can be coupled to either the reamer or impactor. The tracking element will couple to a predetermined location. Points in 3D space can be registered to provide a frame of reference for the tracking element or when the tracking element is moved from tool to tool. The tracking element sends data from the reamer or impactor wirelessly. The remote system receives the tracking data and can further process the data. A display on the remote system can support placement and orientation of the tool to aid in the installation of the prosthetic component.
摘要:
A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.
摘要:
A distractor suitable for measuring a force, pressure, or load applied by the muscular-skeletal system is disclosed. An insert couples to the distractor. The insert has at least one articular surface allowing movement of the muscular-skeletal system when the distractor is inserted thereto. The insert can be a passive insert having no measurement devices. A sensor array and electronics are housed within the distractor. The distractor can dynamically distract the muscular-skeletal system. A handle of the distractor can be rotated to increase or decrease the spacing between support structures. The measurement system comprises a sensor array and electronic circuitry. In one embodiment, the electronic circuitry is coupled to the sensor array by a unitary circuit board or substrate. The sensors can be integrated into the unitary circuit board. For example, the sensors can comprise elastically compressible capacitors or piezo-resistive devices. The distractor wirelessly couples to a remote system for providing position and magnitude measurement data of the force, pressure, or load being measured.
摘要:
A sensor system uses positive closed-loop feedback to provide energy waves into a medium. It comprises a transducer (604), a propagating structure (602), and a transducer (606). A parameter is applied to the propagating structure that affects the medium. A sensor is coupled to a propagation tuned oscillator (416) that forms a positive closed-loop feedback path. The propagation tuned oscillator (416) includes a zero-crossing receiver (200) that generates a pulse upon sensing a transition of an energy wave from the propagating structure (602). The zero-crossing receiver (200) is in the feedback path that maintains the emission of energy waves into the propagating structure (602). The zero-crossing receiver (200) comprises a preamplifier (206), a filter (208), an offset adjustment circuit (210), a comparator (212) and a pulse circuit (218). The transit time, phase, or frequency is measured of the propagating energy waves and correlated to the parameter being measured.
摘要:
A wirelessly powered medical implant system comprising: a power source system including: an automatic gain controller to receive input power, automatically adjust the input power based on a feedback signal with an offset phase delay, and provide the adjusted input power as output power; a source resonator to generate, based on the output power, a magnetic field to transmit wireless power via the magnetic field, and provide the feedback signal; and an offset phase delay circuit to receive the feedback signal from the source resonator, generate the offset phase delay, and include the offset phase delay with the feedback signal; and a medical implant including: an implant resonator to receive the transmitted wireless power via the magnetic field; and one or more sensors, wherein the feedback signal is based on inductive coupling of the magnetic field between the source resonator and the implant resonator.
摘要:
A medical system comprising a first medical device, a second medical device, and a computer. The first medical device is configured to be placed beneath the dermis. The first medical device comprises an enclosure comprising non-electrically conductive material. A cap couples to the enclosure and is configured to seal the enclosure. The enclosure houses electronic circuitry configured to measure one or more parameter or provide a therapy. The cap couples to the ground of the electronic circuitry. The first medical device includes a dual band antenna. A first antenna is configured to operate within a first frequency band below 1 gigahertz. The second antenna is configured to operate at a frequency above 1 gigahertz. The second medical device is configured to transmit a radio frequency signal to the first medical device. The first medical device is configured to harvest the energy received from the radio frequency signal to enable the electronic circuitry and perform at least one task.
摘要:
Aspects disclosed herein provide a method for optimizing a medical treatment plan. The method may include receiving kinematics data from a wearable sensor coupled to an instant patient, determining, based on the received kinematics data and stored information, a medical treatment plan. The procedure may include installation of an implant. Determining the medical treatment plan may include determining an alignment, position, design, or type of the implant. The stored information may include preoperative information for the instant patient and preoperative information, intraoperative information, and postoperative information from a plurality of previous patients having at least one characteristic in common with the instant patient. Each of the preoperative information, intraoperative information, and postoperative information may include kinematics data obtained using a previous wearable sensor.
摘要:
A method includes providing a distraction device, and providing, separate from the distraction device, a disposable force sensor pod configured to be removably coupled to the distraction device. The method also includes communicating, by the disposable force sensor pod, information relating to distraction of a joint by the distraction device to a computing system.
摘要:
An orthopedic measurement system is disclosed to measure leg alignment. The measurement system includes a tri-axial gyroscope configured to measure movement of a leg. The gyroscope is coupled to a tibia of the leg. For example, the gyroscope can be placed in an insert or tibial prosthetic component that couples to the tibia. The gyroscope is used to measure alignment relative to the mechanical axis of the leg. The leg alignment measurement is performed by putting the leg through a first leg movement and a second leg movement. The gyroscope outputs angular velocities on the axes the sensor is rotated about. The gyroscope is coupled to a computer that calculates the alignment of the leg relative to the mechanical axis from the gyroscope measurement data.
摘要:
Disclosed herein are methods for determining kinematic information of a joint. A method according to one embodiment may comprise the steps of receiving data obtained from a sensor of an implanted joint implant, analyzing the data with a trained estimation model to simultaneously determine kinematic information of the joint in six degrees of freedom, and outputting the kinematic information. In another embodiment, a method may comprise the steps of applying data obtained from a Hall sensor of an implanted joint implant to a trained estimation model to simultaneously determine kinematic information of the joint in six degrees of freedom; and outputting the kinematic information.