摘要:
A method of fabricating a reflective type LCD, having the steps of: (a)providing a substrate; (b) forming a polymer resin layer on the substrate; (c) forming a positive-type photoresist layer on the polymer resin layer, wherein the upper surface of the photoresist layer has a convex/concave profile; and (d)performing a dry etching process to completely remove the photoresist layer and partially remove the polymer resin layer so as to shape the upper surface of the polymer resin layer into a convex/concave profile.
摘要:
A test structure for evaluating plasma damage in thin gate oxides is formed with a single polysilicon floating gate EEPROM device on which an antenna structure delivers charge to a floating gate through a tunnel oxide. The floating gate extends beyond the MOSFET channel in one direction, passing over field oxide and terminating in a pad over a thin tunnel oxide window formed over an isolated n+ diffusion. The n+ diffusion is connected to a metal antenna structure which is exposed to a processing plasma. Charge accumulated on the antenna during plasma exposure causes a tunnel current to flow through the tunnel oxide, and charge to accumulate on the floating gate. A second extension of the polysilicon floating gate passes over a second field oxide region and terminates in a pad over a thicker oxide formed on a second isolated n+ diffusion. The second n+ diffusion forms the control gate of the EEPROM and is connected by wiring to a probe pad. The device is formed in the saw-kerf region of a product wafer. After exposure of the device to plasma processing, the device is tested in-line with conventional probe testing equipment. Threshold voltage is measured by applying a scanning voltage to the control gate of the EEPROM. The device is capable of determining polarity and magnitude of charge accumulated on the gate from the plasma and is able to distinguish the degree of plasma damage incurred by various plasma processes. The test device has a greater sensitivity than other plasma sensing devices because the threshold voltage can be amplified by the EEPROM.
摘要:
An erasable programmable single-poly nonvolatile memory includes a first PMOS transistor comprising a select gate, a first p-type doped region, and a second p-type doped region, wherein the select gate is connected to a select gate voltage, and the first p-type doped region is connected to a source line voltage; a second PMOS transistor comprising the second p-type doped region, a third p-type doped region, and a floating gate, wherein the third p-type doped region is connected to a bit line voltage; and an erase gate region adjacent to the floating gate, wherein the erase gate region is connected to an erase line voltage.
摘要:
A one-bit memory cell for a nonvolatile memory includes a bit line and a plurality of serially-connected storage units. The bit line is connected to the serially-connected storage units. Each storage unit includes a first doped region, a second doped region and a third doped region, which are formed in a surface of a substrate. A first gate structure is disposed over a first channel region between the first doped region and the second doped region. The first gate structure is connected to a control signal line. A second gate structure is disposed over a second channel region between the second doped region and the third doped region. The second gate structure is connected to an anti-fuse signal line.
摘要:
A one-bit memory cell for a nonvolatile memory includes a bit line and a plurality of serially-connected storage units. The bit line is connected to the serially-connected storage units. Each storage unit includes a first doped region, a second doped region and a third doped region, which are formed in a surface of a substrate. A first gate structure is disposed over a first channel region between the first doped region and the second doped region. The first gate structure is connected to a control signal line. A second gate structure is disposed over a second channel region between the second doped region and the third doped region. The second gate structure is connected to an anti-fuse signal line.
摘要:
A non-volatile memory unit cell includes a first transistor pair and first and second control gates. The first transistor pair includes first and second transistors that are connected in series and of the same type. The first and second transistors have a first floating polysilicon gate and a second floating polysilicon gate, respectively. The first control gate is coupled to the first floating polysilicon gate through a tunneling junction and the second control gate is coupled to the second floating polysilicon gate through another tunneling junction.
摘要:
An operating method for a memory unit is provided, wherein the memory unit includes a well region, a select gate, a first gate, a second gate, an oxide nitride spacer, a first diffusion region, and a second diffusion region. The operating method for the memory unit comprises the following steps. During a programming operation, a breakdown voltage is coupled to the second diffusion region through a first channel region formed under the select gate. A programming voltage is sequentially or simultaneously applied to the first gate and the second gate to rupture a first oxide layer and a second oxide layer, wherein the first oxide layer is disposed between the first gate and the well region, and the second oxide layer is disposed between the second gate and the well region.
摘要:
A single-polysilicon layer non-volatile memory having a floating gate transistor, a program gate and a control gate is provided. The floating gate transistor has a floating gate and a tunneling dielectric layer. The floating gate is disposed on a substrate. The tunneling dielectric layer is disposed between the floating gate and the substrate. The program gate, the control gate and the erase gate are respectively disposed in the substrate under the floating gate separated by the tunneling dielectric layer. Therefore, during a program operation and an erase operation, charges are injected in and expelled out through different regions of the tunneling dielectric layer, so as to increase reliability of the non-volatile memory.
摘要:
A non-volatile memory unit cell includes a first transistor pair and first and second control gates. The first transistor pair includes first and second transistors that are connected in series and of the same type. The first and second transistors have a first floating polysilicon gate and a second floating polysilicon gate, respectively. The first control gate is coupled to the first floating polysilicon gate through a tunneling junction and the second control gate is coupled to the second floating polysilicon gate through another tunneling junction.
摘要:
A non-volatile memory disposed in a SOI substrate is provided. The non-volatile memory includes a memory cell and a first conductive type doped region. The memory cell includes a gate, a charge storage structure, a bottom dielectric layer, a second conductive type drain region, and a second conductive type source region. The gate is disposed on the SOI substrate. The charge storage structure is disposed between the gate and the SOI substrate. The bottom dielectric layer is disposed between the charge storage layer and the SOI substrate. The second conductive type drain region and the second conductive type source region are disposed in a first conductive type silicon body layer next to the two sides of the gate. The first conductive type doped region is disposed in the first conductive type silicon body layer and electrically connected to the conductive type silicon body layer beneath the gate.