摘要:
An anti-fuse memory with coupling channel is provided. The anti-fuse memory includes a substrate of a first conductive type, a doped region of a second conductive type, a coupling gate, a gate dielectric layer, an anti-fuse gate, and an anti-fuse layer. The substrate has an isolation structure. The doped region is disposed in the substrate. A channel region is defined between the doped region and the isolation structure. The coupling gate is disposed on the substrate between the doped region and the isolation structure. The coupling gate is adjacent to the doped region. The gate dielectric layer is disposed between the coupling gate and the substrate. The anti-fuse gate is disposed on the substrate between the coupling gate and the isolation structure. The anti-fuse gate and the coupling gate have a space therebetween. The anti-fuse layer is disposed between the anti-fuse gate and the substrate.
摘要:
An only-one-polysilicon layer non-volatile memory unit cell includes a first P-type transistor, a second P-type transistor, a N-type transistor pair, a first and second coupling capacitors is provided. The N-type transistor pair has a third transistor and a fourth transistor that are connected. The third transistor and the fourth transistor have a first floating polysilicon gate and a second floating polysilicon gate to serve as charge storage mediums, respectively. One end of the second coupling capacitor is connected to the gate of the second transistor and is coupled to the second floating polysilicon gate, the other end of the second coupling capacitor receives a second control voltage. One end of the second coupling capacitor is connected to the gate of the second transistor and is coupled to the second floating polysilicon gate, the other end of the second coupling capacitor receives a second control voltage.
摘要:
A non-volatile semiconductor memory cell with dual functions includes a substrate, a first gate, a second gate, a third gate, a charge storage layer, a first diffusion region, a second diffusion region, and a third diffusion region. The second gate and the third gate are used for receiving a first voltage corresponding to a one-time programming function of the dual function and a second voltage corresponding to a multi-time programming function of the dual function. The first diffusion region is used for receiving a third voltage corresponding to the one-time programming function and a fourth voltage corresponding to the multi-time programming function. The second diffusion region is used for receiving a fifth voltage corresponding to the multi-time programming function.
摘要:
A one-time-programmable memory device comprises a one-time-programmable memory cell array, a voltage pumping circuit, and a programming verification circuit. The one-time-programmable memory cell array comprises a plurality of memory cells. Each memory cell is arranged at an intersection of a bit line and a word line. The voltage pumping circuit comprises a plurality of local voltage boost circuits. Each local voltage boost circuit is shared by a corresponding memory cell of the plurality of memory cells. The programming verification circuit is coupled to the one-time-programmable memory cell array for verifying that conduction current of programmed memory cells of the plurality of memory cells is greater than a predetermined current level after programming. Each local boost circuit isolates leakage current of a corresponding programmed memory cell, and prevents programming voltage failure due to current overloading at a corresponding voltage pumping circuit.
摘要:
The present invention provides a non-volatile memory cell structure. A first isolation structure is disposed on a substrate and a semiconductor layer is disposed on the first isolation structure to form a silicon on insulator device. A first doping region is made of a portion of the semiconductor layer. A gate is disposed on the first doping region. A gate oxide layer is sandwiched between the first doping region and the gate. A second doping region is disposed within the semiconductor layer and outside the first doping region. A second doping region is in direct contact with the first doping region. A second isolation structure is disposed on the first isolation structure. Further, the second isolation structure surrounds the first doping region and the second doping region. The second isolation structure is also in direct contact with the first doping region and the second doping region.
摘要:
A non-volatile semiconductor memory device includes a substrate, a first gate formed on a first region of a surface of the substrate, a second gate formed on a second region of the surface of the substrate, a charge storage layer filled between the first gate and the second gate, a first diffusion region formed on a first side of the charge storage layer, and a second diffusion region formed opposite the charge storage layer from the first diffusion region. The first region and the second region are separated by a distance sufficient for forming a self-aligning charge storage layer therebetween.
摘要:
A method of forming a charge-storing layer in a non-volatile memory cell in a logic process includes forming a select gate over an active region of a substrate, forming long polysilicon gates partially overlapping the active region of the substrate, and filling the charge-storing layer between the long polysilicon gates.
摘要:
A one-time-programmable memory device comprises a one-time-programmable memory cell array, a voltage pumping circuit, and a programming verification circuit. The one-time-programmable memory cell array comprises a plurality of memory cells. Each memory cell is arranged at an intersection of a bit line and a word line. The voltage pumping circuit comprises a plurality of local voltage boost circuits. Each local voltage boost circuit is shared by a corresponding memory cell of the plurality of memory cells. The programming verification circuit is coupled to the one-time-programmable memory cell array for verifying that conduction current of programmed memory cells of the plurality of memory cells is greater than a predetermined current level after programming. Each local boost circuit isolates leakage current of a corresponding programmed memory cell, and prevents programming voltage failure due to current overloading at a corresponding voltage pumping circuit.
摘要:
A pixel circuit includes a first transistor coupled to a supply voltage end, a second transistor coupled to a ground end, a storage capacitor, a third transistor coupled to a data end, a fourth transistor, a fifth transistor coupled to the second transistor and the second end of the storage capacitor, and a light-emitting element coupled to the fourth transistor. The first transistor is used for conducting a supply voltage from the supply voltage end in response to a trigger of an enable signal. The second transistor is used for conducting a ground voltage from the ground end when a scan signal voltage is triggered. The storage capacitor includes a first end and a second end coupled to the first transistor and the second transistor, respectively. The third transistor is used for conducting a data signal voltage when the scan signal voltage is triggered. The fourth transistor is used for generating a conducting current based on the data signal voltage when the scan signal voltage is not triggered. The fifth transistor is used for forming a conducting route between the storage capacitor and the fifth transistor. The light-emitting element is used for generating light based on the conducting current of the fourth transistor.
摘要:
An operating method for a memory unit is provided, wherein the memory unit includes a well region, a select gate, a first gate, a second gate, an oxide nitride spacer, a first diffusion region, and a second diffusion region. The operating method for the memory unit comprises the following steps. During a programming operation, a breakdown voltage is coupled to the second diffusion region through a first channel region formed under the select gate. A programming voltage is sequentially or simultaneously applied to the first gate and the second gate to rupture a first oxide layer and a second oxide layer, wherein the first oxide layer is disposed between the first gate and the well region, and the second oxide layer is disposed between the second gate and the well region.