Abstract:
A digital clock generator circuit with built-in frequency and duty cycle control may include a pulse generator for generating a start pulse. The pulse generator may be connected to a ring oscillator to generate multiple signals having a specified frequency and programmable duty cycles. The oscillator may further be connected to a multiplexer which selectively connects one output of the ring oscillator to a final output to produce a signal of the specified frequency and specified duty cycle. The duty cycle may be adjustable over a wide range and across the full frequency band of operation.
Abstract:
A method of forming a device, the method including: depositing a first photoresist layer over a substrate, forming an array of seed lenses by patterning and reflowing the first photoresist layer, a dimension of the array of seed lenses varying across the substrate, forming a second photoresist layer over the array of seed lenses, and forming a microlens array by patterning and reflowing the second photoresist layer.
Abstract:
Disclosed herein is a microelectromechanical (MEMS) device, including a rotor and a first piezoelectric actuator mechanically coupled to the rotor. The first piezoelectric actuator is electrically coupled between a first signal node and a common voltage node. A second piezoelectric actuator is mechanically coupled to the rotor, and is electrically coupled between a second signal node and the common voltage node. Control circuitry includes a drive circuit configured to drive the first and second piezoelectric actuators, a sense circuit configured to process sense signals generated by the first and second pizeoelectric actuators, and a multiplexing circuit. The multiplexing circuit is configured to alternate between connecting the drive circuit to the first piezoelectric actuator while connecting the sense circuit to the second piezoelectric actuator, and connecting the drive circuit to the second piezoelectric actuator while connecting the sense circuit to the first piezoelectric actuator.
Abstract:
A die including a first contact with a first shape (e.g., ring-shaped) and a second contact with a second shape (e.g., cylindrical shaped) different from the first shape. The first contact has an opening that extends through a central region of a surface of the first contact. A first solder portion is coupled to the surface of the first contact and the first solder portion has the first shape. A second solder portion is coupled to a surface of the second contact and the second solder portion has the second shape. The first solder portion and the second solder portion both have respective points furthest away from a substrate of the die. These respective points of the first solder portion and the second solder portion are co-planar with each other such that a standoff height of the die remains consistent when coupled to a PCB or an electronic component.
Abstract:
The present disclosure is directed to a package, such as a wafer level chip scale package (WLCSP), with a die coupled to a central portion of a transparent substrate. The transparent substrate includes a central portion having and a peripheral portion surrounding the central portion. The package includes a conductive layer coupled to a contact of the die within the package that extends from the transparent substrate to an active surface of the package. The active surface is utilized to mount the package within an electronic device or to a printed circuit board (PCB) accordingly. The package includes a first insulating layer separating the die from the conductive layer, and a second insulating layer on the conductive layer.
Abstract:
A scanning laser projector includes an optical module and projection engine. The optical module includes a laser generator outputting a laser beam, and a movable mirror scanning the laser beam across an exit window defined through the housing in a scanning pattern wider than the exit window such that the laser beam is directed through the exit window in a projection pattern that is smaller than and within the scanning pattern. A first light detector is positioned about a periphery of the exit window such that as the movable mirror scans the laser beam in the scan pattern, at a point in the scan pattern where the laser beam is scanned across an interior of the housing and not through the exit window, the laser beam impinges upon the first light detector. The projection engine adjusts driving of the movable mirror based upon output from the first light detector.
Abstract:
A control system for a laser scanning projector includes a mirror controller generating horizontal and vertical mirror synchronization signals for an oscillating mirror apparatus based upon a mirror clock signal, and laser modulation circuitry. The laser modulation circuitry generates horizontal and vertical laser synchronization signals as a function of a received laser clock signal, and generates control signals for a laser that emits a laser beam that impinges on the oscillating mirror apparatus. Synchronization circuitry generates the laser clock signal and sends the laser clock signal to the laser modulation circuitry, receives the horizontal and vertical mirror synchronization signals from the mirror controller, receives the horizontal and vertical laser synchronization signals from the laser modulation circuitry, and modifies the laser clock signal so as to achieve alignment between the horizontal and vertical mirror synchronization signals and the horizontal and vertical laser synchronization signals.
Abstract:
Provided is a device comprising a frequency demodulator and an amplitude demodulator. The device is configured to use, in a first mode, both the frequency demodulator and the amplitude demodulator in parallel and to activate a radio frequency identification (RFID) card mode or a Qi charger mode based on results provided by said demodulators.
Abstract:
The present description concerns a converter comprising an AC-DC conversion stage comprising a first thyristor, a first power supply circuit delivering a first reference voltage between a first node and a second node, and a second power supply circuit delivering a second reference voltage between third and fourth nodes, the cathode of the first thyristor being coupled to the first node of the first power supply circuit by a first switch and being connected to the fourth node, the second power supply circuit comprising a first rectifying element coupled to the second node of the first power supply circuit and coupled to the third node.
Abstract:
Disclosed herein is a microelectromechanical (MEMS) device, including a rotor and a first piezoelectric actuator mechanically coupled to the rotor. The first piezoelectric actuator is electrically coupled between a first signal node and a common voltage node. A second piezoelectric actuator is mechanically coupled to the rotor, and is electrically coupled between a second signal node and the common voltage node. Control circuitry includes a drive circuit configured to drive the first and second piezoelectric actuators, a sense circuit configured to process sense signals generated by the first and second pizeoelectric actuators, and a multiplexing circuit. The multiplexing circuit is configured to alternate between connecting the drive circuit to the first piezoelectric actuator while connecting the sense circuit to the second piezoelectric actuator, and connecting the drive circuit to the second piezoelectric actuator while connecting the sense circuit to the first piezoelectric actuator.