Abstract:
A touch screen display may include gate line driver circuitry coupled to a display pixel array. The display may be provided with intra-frame pausing (IFP) capabilities, where touch or other operations may be performed during one or more intra-frame blanking intervals. In one suitable arrangement, a gate driver may be operable in a high impedance mode, where the output of the gate driver is left floating during touch or IFP intervals. In another suitable arrangement, the gate driver may be operable in an IFP reduced stress mode, where a digital pass gate in the gate driver is deactivated during IFP intervals. In yet another suitable arrangement, the gate driver may be operable in an all-gate-high (AGH) power-down mode, where the output of each gate driver in the driver circuitry is driven high in parallel when the displayed is being powered off. These arrangements may be implemented in any suitable combination.
Abstract:
An electronic device may be provided with wireless circuitry and a display. A display driver integrated circuit in the display may have a spectrum analyzer circuit. An antenna may monitor for wireless signals. The display driver integrated circuit may use the spectrum analyzer circuit to analyze the wireless signals and determine whether there is a potential for visible display artifacts. In the presence of conditions that can lead to display artifacts, the display driver integrated circuit may adjust a gate driver control signal. Adjustments to the gate driver control signal may be made using adjustable signal dividers. The adjustments to the gate driver control signal eliminate the visible display artifacts.
Abstract:
An electronic device may be provided with wireless circuitry and a display. A display driver integrated circuit in the display may have a spectrum analyzer circuit. An antenna may monitor for wireless signals. The display driver integrated circuit may use the spectrum analyzer circuit to analyze the wireless signals and determine whether there is a potential for visible display artifacts. In the presence of conditions that can lead to display artifacts, the display driver integrated circuit may adjust a gate driver control signal. Adjustments to the gate driver control signal may be made using adjustable signal dividers. The adjustments to the gate driver control signal eliminate the visible display artifacts.
Abstract:
An electronic display system has a light transmissive panel, a region of display elements on the panel, and source lines coupled to the display elements. A demultiplexer circuit has multiple groups of pass gates. Each pass gate has a pair of complimentary on-panel transistors, and the signal outputs of each group are connected to a respective group of the source lines. A display driver integrated circuit (IC) receives video data and timing control signals. A signal input of each group of pass gates is connected to a respective output pin of the driver IC. The display driver IC provides digital timing control signals to control the pass gates of the demultiplexer circuit. Other embodiments are also described.
Abstract:
Systems and methods for efficiently generating display driver timing signals are provided. In one example, display driver circuitry of an electronic display may provide a negative voltage from a negative voltage supply to display control circuitry during a first period and may provide a positive voltage from a positive voltage supply to the display control circuitry during a second period. After providing the negative voltage during the first period but before providing the positive voltage during the second period, the display driver circuitry may precharge the capacitance of the display control circuitry to ground. In this way, the positive voltage supply substantially does not supply charge to raise the voltage on the capacitance of the display control circuitry from the negative voltage to ground.
Abstract:
Methods and devices employing circuitry for reducing power usage of a touch-sensitive display are provided. In one example, a method for reducing power usage of a touch-sensitive display may include receiving power for the display of an electronic device. The method may also include powering a touch subsystem and a display subsystem of the display. The method may include, in a standard display mode, receiving synchronization signals at a first rate. A frame of data is stored on pixels of the display subsystem between each synchronization signal. The method may also include, in a low power display mode, receiving synchronization signals at a second rate. The second rate is less than the first rate. The method may include detecting a touch of the display via the touch subsystem between each synchronization signal.
Abstract:
Electronic displays may display a frame of image content by controlling emissions of display pixels. To this end, the electronic display may include one or more column drivers that drive the display pixels to emit light. The column drivers may be collectively compensated by common components, such as a single sampling capacitor and/or an analog buffer, which may reduce a size of the column drivers. In another example, the column drivers may include cascode transistors with increased width-to-length ratio and share a common n-well. Each transistor may be compensated by a respective capacitor, however a size of each sampling capacitor may be reduced, thereby reducing a size of the column driver. Moreover, a size of a level shifter may be reduced by operating transistors of the level shifter with sub-threshold voltage. Furthermore, a resolution of the electronic display may be improved by extending a pulse of an emission clock signal.
Abstract:
A pulse width modulation and amplitude modulation driving system for a display panel, including related circuits and methods of operation, are described. In an embodiment, a display panel includes a thin film transistor layer comprising a plurality of subpixel circuits. Each subpixel circuit may include a drive transistor, a comparator, and a switch. A plurality of light emitting diodes (LEDs), such as micro-LEDs, may be connected to the plurality of subpixel circuits. Each subpixel circuit can control an LED based on a current amplitude controlled by the drive transistor and a current pulse width controlled by the comparator and the switch. Other aspects are also described and claimed.
Abstract:
An electronic device uses a leader synchronize signal generator to synchronize clock signal generators used by multiple components in the electronic device to a common time-base. A processor core complex of the electronic device sends per-frame configuration to a timing controller for frames to be displayed on an electronic display before a corresponding frame begins.
Abstract:
Touch sensitive display technologies (e.g., integrated touch-display pixel-based systems) are evolving to contain more analog and digital circuits inside the panel itself instead of the traditionally simple thin-film transistors. This improves the display characteristics but makes those circuits more vulnerable to the impact of external ESD strikes, which can degrade the user experience. This disclosure describes a series of circuits and techniques to mitigate the impact of these discharges on front of screen artifacts and potential false touches. These circuits and techniques may include: performing configuration-only panel updates independently of the image refresh rate, improving the in-panel memory circuits to make them resistant to unexpected pin toggles via disabling of a write path in response to a read clock, implementing a pin corruption detector and implementing a supply injection detector.