Abstract:
One arrangement concerns a portable device (e.g., a smartphone) that executes plural recognition agents, such as agents that perform fingerprint-based object recognition, fingerprint-based audio recognition, barcode reading, watermark decoding, etc. Each of the agents reads from and writes to a blackboard data structure, to which camera and microphone sensors also post their data. Queues of stored sensor data are thus available for the agents to process. In some arrangements, the agents also post—to the blackboard—estimates of the resource costs required to perform certain functions, and estimates of the quality of results that may be achieved by such functions. This allows the system to make informed decisions about how to deploy the device's limited resources (battery, processing cycles, network bandwidth, etc.). A great variety of other features and arrangements are also detailed.
Abstract:
Wireless beacons, such as short range Bluetooth beacons, are combined with other technologies—including audio and image recognition technologies (e.g., fingerprint- or digital watermark-based)—to provide a variety of enhanced capabilities and services.
Abstract:
A variety of haptic improvements useful in mobile devices are detailed. In one, a smartphone captures image data from a physical object, and discerns an object identifier from the imagery (e.g., using watermark, barcode, or fingerprint techniques). This identifier is sent to a remote data structure, which returns data defining a distinct haptic signature associated with that object. This smartphone then renders this haptic signal to the user. (Related embodiments identify the object using other means, such as location, or NFC chip.) In another arrangement, haptic feedback signals social network information about a product or place (e.g., the user's social network friends “Like” a particular brand of beverage). In yet another arrangement, the experience of watching a movie on a television screen is augmented by tactile effects issued by a tablet computer on the viewer's lap. In still another arrangement, commercial vendors bid for rights to employ different ones of a library of haptic signals on one or more users' smartphones, e.g., to alert such user(s) to their products/services. A great variety of other features and arrangements are also detailed.
Abstract:
A smartphone is adapted for use as an imaging spectrometer, by synchronized pulsing of different LED light sources as different image frames are captured by the phone's CMOS image sensor. A particular implementation employs the CIE color matching functions, and/or their orthogonally transformed functions, to enable direct chromaticity capture. A great variety of other features and arrangements are also detailed.
Abstract:
One arrangement concerns a portable device (e.g., a smartphone) that executes plural recognition agents, such as agents that perform fingerprint-based object recognition, fingerprint-based audio recognition, barcode reading, watermark decoding, etc. Each of the agents reads from and writes to a blackboard data structure, to which camera and microphone sensors also post their data. Queues of stored sensor data are thus available for the agents to process. In some arrangements, the agents also post—to the blackboard—estimates of the resource costs required to perform certain functions, and estimates of the quality of results that may be achieved by such functions. This allows the system to make informed decisions about how to deploy the device's limited resources (battery, processing cycles, network bandwidth, etc.). A great variety of other features and arrangements are also detailed.
Abstract:
Directional albedo of a particular article, such as an identity card, is measured and stored. When the article is later presented, it can be confirmed to be the same particular article by re-measuring the albedo function, and checking for correspondence against the earlier-stored data. The re-measuring can be performed through us of a handheld optical device, such as a camera-equipped cell phone. The albedo function can serve as random key data in a variety of cryptographic applications. The function can be changed during the life of the article. A variety of other features are also detailed.
Abstract:
A sequence of images depicting an object is captured, e.g., by a camera at a point-of-sale terminal in a retail store. The object is identified, such as by a barcode or watermark that is detected from one or more of the images. Once the object's identity is known, such information is used in training a classifier (e.g., a machine learning system) to recognize the object from others of the captured images, including images that may be degraded by blur, inferior lighting, etc. In another arrangement, such degraded images are processed to identify feature points useful in fingerprint-based identification of the object. Feature points extracted from such degraded imagery aid in fingerprint-based recognition of objects under real life circumstances, as contrasted with feature points extracted from pristine imagery (e.g., digital files containing label artwork for such objects). A great variety of other features and arrangements—some involving designing classifiers so as to combat classifier copying—are also detailed.
Abstract:
Methods and arrangements involving portable devices, such as smartphones and tablet computers, are disclosed. One particular arrangement concerns a software program that is launched following detection of audio content performed by a first musical artist. A phone can be provided with plural such software programs, tailored to respond to different types of detected content. Another aspect of the disclosed technology enables a creator of content to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. A great variety of other features and arrangements are also detailed.
Abstract:
The present disclosures relates generally to digital watermarking and data hiding. One claim recites an apparatus comprising: memory for storing data representing video; one or more electronic processors programmed for: embedding a first watermark signal in a first portion of the data, the first watermark signal comprising a first signal polarity and corresponding to first detection preconditioning; embedding a second watermark signal in a second portion of the data, the second watermark signal comprising a second signal polarity that is inversely related to the first signal polarity and corresponding to seconding detection preconditioning; controlling provision of the watermarked video for display in real time, in which temporal averaging of the first watermark signal and second watermark signal over time conceals the first watermark signal and the second watermark signal from a human observer of the video. Of course, other claims are provided too.
Abstract:
The availability of high quality imagers on smartphones and other portable devices facilitates creation of a large, crowd-sourced, image reference library that depicts skin rashes and other dermatological conditions. Some of the images are uploaded with, or later annotated with, associated diagnoses or other information (e.g., “this rash went away when I stopped drinking milk”). A user uploads a new image of an unknown skin condition to the library. Image analysis techniques are employed to identify salient similarities between features of the uploaded image, and features of images in this reference library. Given the large dataset, statistically relevant correlations emerge that identify to the user certain diagnoses that may be considered, other diagnoses that may likely be ruled-out, and/or anecdotal information about similar skin conditions from other users. A great variety of other features and arrangements are also detailed.