Abstract:
According to the present invention, defective element(s), such as a faulty local wordline, of an integrated circuit memory device may be selectively replaced with redundant element(s) in an efficient and flexible manner that does not require replacement of all elements associated with a master element of the memory device, thereby increasing the efficiency with which faulty elements of the memory device may be replaced. For a SRAM having a plurality of blocks, this is accomplished by combining defective block information as well as defective element information, such as bad row information, in the redundant global wordline control circuitry of the device. Then, the "normal" global wordline associated with a faulty local wordline is selectively disabled and a redundant global wordline is selectively enabled, upon detection of the address of the faulty local wordline. The normal global wordline can be enabled when the address corresponds to a non-faulty local wordline.
Abstract:
A method for stress testing a memory array in an integrated circuit. Control circuitry selects a plurality of row lines at one time. An overvoltage suitable for stressing the cells of the array is placed on the bit lines. Because a block of cells has been selected, the overvoltage is applied to all cells of the block. The block of cells selected may be either the entire memory array or a portion of the memory array. The selected rows remain selected for the duration of the stress test. Because the overvoltage is applied directly to selected cells, the full overvoltage will be used to stress the transistor gates for the entire test period. In this manner, latent defects within the memory array can be detected.
Abstract:
Two addresses of an integrated circuit are selected to define a portion of the die which is functional and the portion of the die which will not be used. An input structure for addresses, which may be added to part of the electrostatic discharge (ESD) input structure of a pin, allows an address signal to be set to a predetermined logic level and to not be bonded out to the package. Additionally, another input structure allows the mapping of a signal pin to be changed. The function of a pin may need to be changed to accommodate a pinout for a different density device. This is useful when a die is put into a smaller density device package which has a pin out that does not accommodate the die. In this way, partially functional die that previously were discarded may be utilized, thereby recouping potential losses during manufacturing.
Abstract:
An input buffer circuit is disclosed which has feedback hysteresis transistors having similar size characteristics as the drive transistors. The drive transistors are located in a first inverting CMOS stage, connected in conventional CMOS inverter fashion. The drains of the drive transistors are connected to the input of an inverter, the output of which drives the signal to elsewhere in the integrated circuit. A first hysteresis leg is provided, consisting of a plurality of p-channel transistors with their source/drain paths in series between the input of the inverter and a power supply voltage; the gate of at least one of the p-channel hysteresis transistors is coupled to the output of the inverter, and the gates of those of the hysteresis transistors that are not coupled to the inverter output are biased to ground. A second hysteresis leg of n-channel hysteresis transistors, similarly but complementarily configured, is provided between ground and the inverter input. The hysteresis transistors each have channel lengths substantially the same as the drive transistors, thus reducing the capacitive load at the output of the inverter and also ensuring good tracking over process variations; the channel widths of the hysteresis transistors may also be made sufficiently wide to avoid small width effects, and thus also provide improved tracking.
Abstract:
An integrated circuit memory is disclosed which includes redundant columns associated with a sub-array, and in which multiple input/output terminals are placed in communication with multiple columns in the sub-array in read and write cycles. The number of redundant columns per sub-array is less than the number of input/output terminals. A multiplexer connects the selected redundant column to a selected sense amplifier and write circuit for the input/output with which the replaced column was associated. The multiplexer includes pass gates connected to the bit lines of the redundant column, and fuses connected between each of the pass gates and each of the sense/write circuits selectable for the redundant column. Those of the fuses which are not associated with the selected input/output are opened, and the fuses associated with the selected input/output are left intact. Precharge transistors are connected to the fuse sides of the pass gates, for precharging each of the floating nodes after the pass gates are turned off. This precharging negates the effect of any charge which may be trapped on the fuse side of the pass gates for those lines where the fuses are opened, so that the access time for the next cycle will not be degraded.
Abstract:
A first-in, first-out (FIFO) memory includes flag generation circuitry which utilizes a write clock counter and a read clock counter to provide the number of write clock pulses received since the previous write reset signal and the number of read clock pulses received by the FIFO since the previous read reset signal. Specific flag values are user-programmable and are stored electronically as binary numbers in registers. The connection between individual subtractor circuits and individual comparator circuits for making a difference comparison is performed by a program select decoder which utilizes the difference output of the subtractor circuit and the flag program value. False flag information is filtered by a bi-stable de-glitch circuit which includes a delay path to emulate operation of the counter, subtractor and comparator. The magnitude comparator is programmed one count away from the desired flag transition point. The filtered flag output is updated at the onset of each blanking interval, thus making it representative of the current state of the FIFO.
Abstract:
An integrated circuit having a normal operating mode and a special operating mode, such as a special test mode, is disclosed. The special test mode is enabled by a series of signals, such as overvoltage excursions at a terminal, rather than by a single such excursion, so that it is less likely that the special test mode is entered inadvertently, such as due to noise or power-down and power-up of the device. The circuit for enabling the test mode includes a series of D-type flip-flops, each of which are clocked upon detection of the overvoltage condition together with a particular logic level applied at another terminal; multiple series of flip-flops may be provided for multiple special test modes. Additional features include the provision of a power-on reset circuit which locks out the entry into the test mode during power-up of the device. Acknowledgment of the entry into test mode is provided by the presentation of a low impedance at output terminals while the device is not enabled; chip enable of the device causes the device to exit the test mode. Once in test mode, the output enable terminal of the device can provide a chip enable function.
Abstract:
An integrated circuit having a normal operating mode and a special operating mode, such as a special test mode, is disclosed. The special test mode is enabled by a series of signals, such as overvoltage excursions at a terminal, rather than by a single such excursion, so that it is less likely that the special test mode is entered inadvertently, such as due to noise or power-down and power-up of the device. The circuit for enabling the test mode includes a series of D-type flip-flops, each of which are clocked upon detection of the overvoltage condition together with a particular logic level applied at another terminal; multiple series of flip-flops may be provided for multiple special test modes. In addition, sequential codes may be used for further security. Logic for evaluating both a sequence of codes received in parallel from a number of address terminals, and also a sequence of serial codes received at single address terminal, are disclosed. Additional features include the provision of a power-on reset circuit which locks out the entry into the test mode during power-up of the device. Acknowledgment of the entry into test mode is provided by the presentation of a low impedance at output terminals while the device is not enabled; chip enable of the device causes the device to exit the test mode. Once in test mode, the output enable terminal of the device can provide a chip enable function.
Abstract:
A fault tolerant sequential memory includes primary and redundant memory rows (or columns) and primary and redundant shift registers. The redundant memory rows (or columns) and redundant shift registers are formed at the end of the serial chain. Each shift register of each primary and redundant memory block is interconnected with an independent, separately programmable multiplexer logic circuit. Each multiplexer logic circuit includes an independently programmable repair buffer for logically bypassing a defective primary memory block and associated shift registers within the primary memory array. Each redundant memory block includes a multiplexer logic circuit having an independently programmable repair buffer for logically enabling a redundant memory block and shift register at the end of the serial chain. Consequently, a faulty memory block, including its shift register and memory row (or column) is bypassed and is effectively removed from the shifting sequence. The redundant memory block, including a redundant shift register and a redundant row (or column), is inserted at the end of the shift register chain by opening a programmable fuse element.
Abstract:
An SRAM having two capacitors connected in series between respective bit storage nodes of each memory cell. The two inverters of the memory cell are powered by a positive voltage and a low voltage. The two capacitors are connected to each other at a common node. A leakage current generator is coupled to the common node. The leakage current generator supplies to the common node a leakage current to maintain a voltage which is approximately halfway between the voltages of the high and low SRAM supplies.