Abstract:
A three-dimensional video creating device (100) includes: a selection unit (123) which selects, from among frames constituting the 2D video, frames each of which has a common area whose proportion to the frame is greater than or equal to a predetermined value, as candidate three-dimensional partner frames that are candidate frames each constituting a three-dimensional image together with a target frame included in the frames constituting the 2D video; a determination unit (124) which determines, from among the candidate three-dimensional partner frames, a three-dimensional partner frame, based on the first criteria; and a three-dimensional pair creation unit (125) which creates a three-dimensional pair constituting the three-dimensional image corresponding to the target frame, using the target frame and the three-dimensional partner frame.
Abstract:
Provided is a technique for packaging a sensor structure having a contact sensing surface and a signal processing LSI that processes a sensor signal. The sensor structure has the contact sensing surface and sensor electrodes. The signal processing integrated circuit is embedded in a semiconductor substrate. The sensor structure and the semiconductor substrate are bonded by a bonding layer, forming a sensor device as a single chip. The sensor electrodes and the integrated circuit are sealed inside the sensor device, and the sensor electrodes and external terminals of the integrated circuit are led out to the back surface of the semiconductor substrate through a side surface of the semiconductor substrate.
Abstract:
Both tilt information included in an image and positional information are acquired in order to calculate a relative tilt angle between at least two images. Whether the tilt information can be used to estimate the tilt angle (whether the tilt information is fake information) is determined from a distribution characteristic in the image of the acquired positional information. The tilt angle is estimated from the tilt information determined to be able to be used. A tilt included in the acquired image is corrected using the estimation result, and the image having the correct orientation can be produced.
Abstract:
To provide an infrared-light reflective plate having improved selective reflectivity characteristics, there is provided an infrared-light reflective plate reflects an infrared-light of equal to or longer than 700 nm including a substrate, and, on at least one of surfaces of the substrate, at least four light-reflective layers, X1, X2, X3 and X4, formed of a fixed cholesteric liquid crystal phase, and disposed in this order from the substrate, wherein the reflection center wavelengths of the light-reflective layers X1 and X2 are same with each other and are λ1 (nm), and the two layers reflect circularly-polarized light in opposite directions; the reflection center wavelengths of the light-reflective layers X3 and X4 are same with each other and are λ2 (nm), and the two layers reflect circularly-polarized light in opposite directions; and λ1
Abstract:
In accordance with an aspect of the present invention, a color display device (10) includes a plurality of gas discharge tubes disposed side by side. The gas discharge tubes have respective phosphor layers (4R, 4G, 4B) of different materials for different colors disposed therein and containing discharge gas therein. Each of the gas discharge tubes has a plurality of light-emitting points disposed along the length thereof. The color display device further includes a plurality of display electrodes disposed on the display screen side of the gas discharge tubes, and a plurality of signal electrodes (3) disposed on the rear side of the gas discharge tubes. Voltage control layers (6R, 6G, 6B) are disposed between the phosphor layers and the signal electrodes. The voltage control layers are made of materials which change firing voltages applied between the display electrodes and the signal electrodes. The materials of the voltage control layers are selected for the different materials of the different phosphor layers so as to minimize the difference of the firing voltages for the plurality of gas discharge tubes.
Abstract:
A network fault diagnostic device is configured in the following manner. A causal relation table stores causal relations between faults and events, and a monitor event selector refers to the causal relation table to extract a minimum event required for identifying a fault, and sets the event as a monitor event. The acquisition-event selector selects events from the causal relation table based on latest fault candidates, and sets priorities of the events selected, in the order of efficiently identifying faults. The event acquiring unit requests events in the order of the priorities set, and the event receiving unit receives each event in response to the respective requests. The fault determining unit narrows down the candidates of the fault based on the events received one by one.
Abstract:
An apparatus of producing bearing device having a bearing, a shaft attached to an inner ring and an outer ring attaching member attached to an outer ring. The apparatus includes a vibrating unit of giving a radial input vibration to each inner ring or both ends of the shaft, and an input vibration detecting unit of detecting vibration of each inner ring or both ends of the shaft, an adding unit of calculating the output of the input vibration detecting unit, a vibration detecting unit of detecting the vibration of a mass attached to the outer ring attaching member, a transfer function calculating unit of determining the transfer function from the output of the vibration detecting unit and the adding unit to calculate the resonance frequency and a rigidity calculating unit of determining the rigidity of the bearing device on the basis of the resonance frequency.
Abstract:
Disclosed is a QoS guaranteeing method on a network path across a plurality of domains, among QoS servers linking the domains included in each of a plurality of domains, the QoS server included in the domain defined as a QoS guaranteeing resource request source performing the steps of generating a QoS guaranteeing resource request message; sending the generated QoS guaranteeing resource request message to the QoS server managing the next domain on the path; and if resources can be reserved in all the domains on the path as a result of the QoS guaranteeing resource request of the QoS guaranteeing resource request message, managing the resources for the obtained QoS guarantee on the path from the next domain to the domain where a destination network address belongs.
Abstract:
According to the present invention, there is provided a method for forming a metal oxide film comprising, when a metal oxide film is formed by conducting a thermal treatment on a coating film containing an organic metal compound formed on an inner wall of a tube, performing an ultraviolet irradiation treatment or an ozone treatment on the coating film prior to or simultaneously with the thermal treatment.
Abstract:
A network fault diagnostic device is configured in the following manner. A causal relation table stores causal relations between faults and events, and a monitor event selector refers to the causal relation table to extract a minimum event required for identifying a fault, and sets the event as a monitor event. The acquisition-event selector selects events from the causal relation table based on latest fault candidates, and sets priorities of the events selected, in the order of efficiently identifying faults. The event acquiring unit requests events in the order of the priorities set, and the event receiving unit receives each event in response to the respective requests. The fault determining unit narrows down the candidates of the fault based on the events received one by one.