摘要:
A method for fabricating a dual damascene structure includes providing a multi-layer photoresist stack comprising a first photoresist layer and a second photoresist layer, wherein each photoresist layer has a distinct dose-to-clear value, exposing said photoresist stack to one or more predetermined patterns of light, and developing said photo-resist layers to form a multi-tiered structure in the photo-resist layers.
摘要:
The circuit structure includes at least two generally parallel conductor structures, and a plurality of substantially horizontal layers of layer dielectric material interspersed with substantially horizontally extending relatively low dielectric constant (low-k) volumes. The substantially horizontal layers and the substantially horizontally extending volumes are generally interposed between the at least two generally parallel conductor structures. Also included are a plurality of substantially vertically extending relatively low-k volumes sealed within the substantially horizontal layers and the substantially horizontally extending volumes between the at least two generally parallel conductor structures. The substantially vertically extending relatively low-k volumes and the substantially horizontally extending relatively low-k volumes reduce parasitic capacitance between the at least two generally parallel conductor structures as compared to an otherwise comparable microelectronic circuit not including the relatively low-k volumes.
摘要:
The embodiments of the invention provide a metal capping process for a BEOL interconnect with air gaps. More specifically an apparatus is provided comprising metal lines within a first dielectric. Metal caps are over the metal lines, wherein the metal caps contact the metal lines. In addition, air gaps are between the metal lines, wherein the air gaps are between the metal caps. A second dielectric is also provided over the bottom portion of a first dielectric, wherein a top portion of the second dielectric is over the metal caps, and wherein top portions of the first dielectric and bottom portions of the second dielectric comprise sides of the air gap. The apparatus further includes dielectric caps over the metal lines, wherein the dielectric caps contact the metal caps.
摘要:
Linear or branched functionalized polycarbosilanes having an absorbance less than 3.0 μm−1 at 193 nm and a relatively high refractive index are provided. The functionalized polycarbosilanes contain at least one pendant group that is acid labile or aqueous base soluble. Also disclosed are photoresists formulations containing the functionalized polycarbosilanes that are suitable for use in lithography, e.g., immersion lithography.
摘要:
The circuit structure includes at least two generally parallel conductor structures, and a plurality of substantially horizontal layers of layer dielectric material interspersed with substantially horizontally extending relatively low dielectric constant (low-k) volumes. The substantially horizontal layers and the substantially horizontally extending volumes are generally interposed between the at least two generally parallel conductor structures. Also included are a plurality of substantially vertically extending relatively low-k volumes sealed within the substantially horizontal layers and the substantially horizontally extending volumes between the at least two generally parallel conductor structures. The substantially vertically extending relatively low-k volumes and the substantially horizontally extending relatively low-k volumes reduce parasitic capacitance between the at least two generally parallel conductor structures as compared to an otherwise comparable microelectronic circuit not including the relatively low-k volumes.
摘要:
A method of forming a stochastically based integrated circuit encryption structure includes forming a lower conductive layer over a substrate, forming a short prevention layer over the lower conductive layer, forming an intermediate layer over the short prevention layer, wherein the intermediate layer is characterized by randomly structured nanopore features. An upper conductive layer is formed over the random nanopore structured intermediate layer. The upper conductive layer is patterned into an array of individual cells, wherein a measurable electrical parameter of the individual cells has a random distribution from cell to cell with respect to a reference value of the electrical parameter.
摘要:
A method for manufacturing a circuit includes the step of providing a first wiring level comprising first wiring level conductors separated by a first wiring level dielectric material. A first dielectric layer with a plurality of interconnect openings and a plurality of gap openings is formed above the first wiring level. The interconnect openings and the gap openings are pinched off with a pinching dielectric material to form relatively low dielectric constant (low-k) volumes in the gap openings. Metallic conductors comprising second wiring level conductors and interconnects to the first wiring level conductors are formed at the interconnect openings while maintaining the relatively low-k volumes in the gap openings. The gap openings with the relatively low-k volumes reduce parasitic capacitance between adjacent conductor structures formed by the conductors and interconnects.
摘要:
Methods of developing or removing a select region of block copolymer films using a polar supercritical solvent to dissolve a select portion are disclosed. In one embodiment, the polar supercritical solvent includes chlorodifluoromethane, which may be exposed to the block copolymer film using supercritical carbon dioxide (CO2) as a carrier or chlorodiflouromethane itself in supercritical form. The invention also includes a method of forming a nano-structure including exposing a polymeric film to a polar supercritical solvent to develop at least a portion of the polymeric film. The invention also includes a method of removing a poly(methyl methacrylate-b-styrene) (PMMA-b-S) based resist using a polar supercritical solvent.
摘要翻译:公开了使用极性超临界溶剂显影或除去嵌段共聚物膜的选择区域以溶解选择部分的方法。 在一个实施方案中,极性超临界溶剂包括氯二氟甲烷,其可以使用超临界二氧化碳(CO 2 CO 2)作为载体或氯二氟乙烷本身以超临界形式暴露于嵌段共聚物膜。 本发明还包括形成纳米结构的方法,包括将聚合物膜暴露于极性超临界溶剂以形成至少一部分聚合物膜。 本发明还包括使用极性超临界溶剂除去聚(甲基丙烯酸甲酯-b-苯乙烯)(PMMA-b-S)基抗蚀剂的方法。
摘要:
Methods of developing or removing a select region of block copolymer films using a polar supercritical solvent to dissolve a select portion are disclosed. In one embodiment, the polar supercritical solvent includes chlorodifluoromethane, which may be exposed to the block copolymer film using supercritical carbon dioxide (CO2) as a carrier or chlorodiflouromethane itself in supercritical form. The invention also includes a method of forming a nano-structure including exposing a polymeric film to a polar supercritical solvent to develop at least a portion of the polymeric film. The invention also includes a method of removing a poly(methyl methacrylate-b-styrene) (PMMA-b-S) based resist using a polar supercritical solvent.
摘要翻译:公开了使用极性超临界溶剂显影或除去嵌段共聚物膜的选择区域以溶解选择部分的方法。 在一个实施方案中,极性超临界溶剂包括氯二氟甲烷,其可以使用超临界二氧化碳(CO 2 CO 2)作为载体或氯二氟乙烷本身以超临界形式暴露于嵌段共聚物膜。 本发明还包括形成纳米结构的方法,包括将聚合物膜暴露于极性超临界溶剂以形成至少一部分聚合物膜。 本发明还包括使用极性超临界溶剂除去聚(甲基丙烯酸甲酯-b-苯乙烯)(PMMA-b-S)基抗蚀剂的方法。
摘要:
A method for manufacturing a circuit includes the step of providing a first wiring level comprising first wiring level conductors separated by a first wiring level dielectric material. A first dielectric layer with a plurality of inter connect openings and a plurality of gap openings is formed above the first wiring level. The interconnect openings and the gap openings are pinched off with a pinching dielectric material to form relatively low dielectric constant (low-k) volumes in the gap openings. Metallic conductors comprising second wiring level conductors and interconnects to the first wiring level conductors are formed at the interconnect openings while maintaining the relatively low-k volumes in the gap openings. The gap openings with the relatively low-k volumes reduce parasitic capacitance between adjacent conductor structures formed by the conductors and interconnects.