Abstract:
Methods for processing substrates in twin chamber processing systems having first and second process chambers and shared processing resources are provided herein. In some embodiments, a method may include providing a substrate to the first process chamber of the twin chamber processing system, wherein the first process chamber has a first processing volume that is independent from a second processing volume of the second process chamber; providing one or more processing resources from the shared processing resources to only the first processing volume of the first process chamber; and performing a process on the substrate in the first process chamber.
Abstract:
A transfer medium is provided for receiving images formed on the medium by inks or toners comprising thermally diffusible colorants, including disperse dye and sublimation dye, and methods of using the medium to present images on substrates. The medium provides an opaque layer that allows transfer of the image from the medium to a substrate, and provides a background for the image when the image is transferred to a dark colored substrate, so that the dark colored substrate does not obscure the image.
Abstract:
A high frequency starter-generator system uses an electric machine design that does not employ rotating rectifiers installed on the rotor. The output frequency of such a starter-generator is increased by about 200% as compared with a conventional starter-generator with the same number of poles operating in the same speed range. This design allows significant weight and volume reductions of the electric machine while its reliability is increased. The present invention may find application in any starter-generator application, including more electric architecture-type aircraft designs currently in development.
Abstract:
Disclosed are compounds of Formula (1), including all geometric and stereoisomers, N-oxides, and salts thereof, Formula (1): wherein A1, A2, A3, A4, A5 and A6 are independently, selected from the group consisting of CR3 and N; provided that at most 3 of A1, A2, A3; A4, A5 and A6 is N; B1, B2 and B3 are independently selected from the group consisting of CR2. and N; each R3 is independently H, halogen, C1-C6 alkyl, C1-C6 haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfo?yl, C1-C6 alkylamino, C2-G6 dialkylamino, —CN or —NO2; and R1, R2, R4, R5, W and n are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula (1) and methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound or a composition of the invention.
Abstract:
A liquid crystal display (LCD) having a liquid crystal layer is provided. In one embodiment, the liquid crystal layer includes a nematic liquid crystal material having liquid crystal molecules in an untwisted state. A chiral dopant is dispersed within the liquid crystal layer and configured to bias the liquid crystal molecules toward a twisted state. Furthermore, a polymer network is disposed among the liquid crystal molecules and configured to bias the liquid crystal molecules toward the untwisted state. Various additional devices and methods are also provided.
Abstract:
A liquid crystal display (LCD) having a plurality of pixels is provided. In one embodiment, the pixels of the LCD each include common and pixel electrodes formed on an insulating layer, and a liquid crystal layer responsive to electric fields generated by the electrodes. The plurality of pixels may include two or more sets of pixels each configured to transmit light of a different color, and the pixel electrodes of one set of pixels may be configured differently from those of another set. In other embodiments, the sizes of the pixels may differ. Various additional devices and methods are also provided.
Abstract:
A liquid crystal display (LCD) is provided having a discontinuous electrode. In certain embodiments, different portions (such as finger- or slit-like extensions) of the discontinuous electrode may be at different depths relative to one another and/or may be of different widths relative to one another. Similarly, in other embodiments, the different portions of the discontinuous electrode may be spaced apart in a non-uniform manner.
Abstract:
A resonant converter equipped with a phase shifting output circuit includes a resonant circuit to receive input power and regulate to become at least one resonant power, a switch unit to switch an ON period for the input power to pass through the resonant circuit and a power transformation circuit to regulate the resonant power and output a transformed power. The resonant converter further has a primary output circuit and at least one secondary output circuit. The primary output circuit regulates the transformed power to become a primary output power. A resonant control unit captures a feedback signal from the primary output circuit and generates a resonant control signal. A phase shifting control unit receives the resonant control signal and regulate to become a phase shifting driving signal. The secondary output circuit is controlled by the phase shifting driving signal and provides a secondary output power.
Abstract:
A resonant switched power converter having switching frequency controlled in response to an output voltage thereof achieves over-current protection such as at start-up or under short circuit conditions using a resonant tank circuit which provides a notch filter in addition to a band pass filter. A additional band pass filter provided in the resonant tank circuit achieves increased power transfer to a load and reduced circulating resonant currents and conduction losses. The inductances of the preferred LCLCL tank circuit or other tank circuit with two pass band filters and a notch filter may be integrated into a single electrical component.
Abstract:
An electrical motor or generator asymmetrical armature winding configuration generating a multi-phase balanced power output. Each winding group for each pole, and the conductors constituting each winding group, are chosen individually according to their magnetomotive force (MMF) vector relationship to provide a balanced power output even though the individual windings may not be balanced or symmetrical.