Abstract:
To solve the above-mentioned problem, the method for transmitting and receiving a signal by user equipment (UE) through one or more cells, according to one embodiment of the present specification, comprises the steps of: receiving, from a base station, a first message indicating whether one or more cells usable by the UE are enabled; determining which cells to enable or disable on the basis of the first message; and enabling or disabling the selected cells. According to the embodiment of the present specification, by aggregating carriers amongst different base stations, a possibility for the UE to transmit and receive high-speed data through carrier aggregation can increase.
Abstract:
To solve the above-mentioned problem, the method for transmitting and receiving a signal by user equipment (UE) through one or more cells, according to one embodiment of the present specification, comprises the steps of: receiving, from a base station, a first message indicating whether one or more cells usable by the UE are enabled; determining which cells to enable or disable on the basis of the first message; and enabling or disabling the selected cells. According to the embodiment of the present specification, by aggregating carriers amongst different base stations, a possibility for the UE to transmit and receive high-speed data through carrier aggregation can increase.
Abstract:
Provided are a method and apparatus for dormant mode operation in a user equipment. During dormant mode, data transmission between the user equipment and network is suspended. For dormant mode operation, the user equipment determines whether to enter dormant mode, and sends, upon determining to enter dormant mode, a dormant mode entry message containing dormant mode time information to the network.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, determining a transmission mode of the terminal, the transmission mode indicating one of a first transmission mode and a second transmission mode, transmitting, to the terminal, configuration information of the determined transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) in a first sub-frame of the MBSFN sub-frames and a second sub-frame of non-MBSFN sub-frames for the terminal, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH in the second sub-frame of the non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, identifying whether the transmission mode of the terminal is a first transmission mode or a second transmission mode, transmitting, to the terminal, dedicated message including configuration information of the identified transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) and data in a physical downlink shared channel (PDSCH) in a first sub-frame of the MBSFN sub-frames, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH and the data in the PDSCH in a second sub-frame of a non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.
Abstract:
A method and apparatus for configuring a radio link of a terminal communicating via aggregated carriers including a primary cell and a secondary cell are provided. The method includes detecting a Radio Link Failure (RLF) for the secondary cell, deactivating the secondary cell, and reporting at least one of a measurement result of the secondary cell and a measurement result of neighboring cell of the secondary cell to a base station. The apparatus includes a transceiver for communicating with a base station, and a controller configured to detect a RLF for the secondary cell, to deactivate the secondary cell, and to report at least one of a measurement result of the secondary cell and a measurement result of neighboring cell of the secondary cell to the base station.
Abstract:
The present invention proposes a method for activating secondary carriers in addition to the primary carrier in a wireless communication system supporting carrier aggregation technology. Through the present invention, the UE sorts the operations for activating an SCell into two groups that are executed at different timings, thereby facilitating communication without malfunctioning.
Abstract:
A method for avoiding interference in an idle mode and a method for receiving a public warning system message regardless of an operation mode when different wireless communication modules coexist in a terminal in a wireless communication system are provided. The method for controlling an idle mode of a terminal in a wireless communication system includes determining whether interference occurs between heterogeneous communication modules of the terminal; and limiting, if the interference occurs between the heterogeneous communication modules, camping on a corresponding frequency of the communication module in which the interference occurs. The terminal can maximally avoid the interference in the idle mode to operate without malfunction, and correctly receive the public warning system message regardless of the operation mode to enable the user to timely receive the corresponding message.
Abstract:
The present disclosure provides a method for cell reselection in a wireless communication system in which various radio access technologies (RATs) coexist with each other. In a wireless communication system in which heterogeneous networks coexist with each other, the method of cell reselection between heterogeneous networks for a user equipment may include: receiving a system information block (SIB) containing cell reselection parameters from a corresponding base station; checking whether cell reselection parameters based on a cell selection quality value (Squal) are configured in the received SIB; and performing, when cell reselection parameter based on Squal are not configured, cell reselection based on a cell selection receive level value (Srxlev). The present disclosure may prevent the user equipment from performing unnecessary cell reselection.
Abstract:
A method and an apparatus are provided in a wireless communication system. The method includes generating mobility history information upon entering an evolved universal mobile telecommunications system (UMTS) radio access network (E-UTRAN) from another radio access technology (RAT), the mobility history information including information on a time duration for which the terminal stayed outside of the E-UTRAN; receiving, from a base station, a request for the mobility history information; and transmitting the mobility history information to the base station, in response to the request.