Abstract:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
Abstract:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
Abstract:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
Abstract:
A method is disclosed for forming a micromechanical device. The method includes fully or partially forming one or more micromechanical structures multiple times on a first substrate. A second substrate is bonded onto the first substrate so as to cover the multiple areas each having one or more micromechanical structures, so as to form a substrate assembly. The substrate assembly is then separated into individual dies, each die having the one or more micromechanical structures held on a portion of the first substrate, with a portion of the second substrate bonded to the first substrate portion. Finally, the second substrate portion is removed from each die to expose the one or more micromechanical structures on the first substrate portion. The invention is also directed to a method for forming a micromechanical device, including: forming one or more micromechanical structures in one or more areas on a first substrate; bonding caps onto the first substrate so as to cover the one or more areas each having one or more micromechanical structures, so as to form a substrate assembly; after a period of time, removing the caps to expose the one or more micromechanical structures. During the period of time between bonding the caps and later removing the caps, the substrate assembly can be singulated, inspected, irradiated, annealed, die attached, shipped and/or stored.
Abstract:
A micromirror of a micromirror array of a spatial light modulator used in display systems comprises a mirror plate attached to a hinge that is supported by two posts formed on a substrate. Also the mirror plate is operable to rotate along a rotation axis that is parallel to but offset from a diagonal of the mirror plate when viewed from the top. An imaginary line connecting the two posts is not parallel to either diagonal of the mirror plate.
Abstract:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
Abstract:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.