Abstract:
An apparatus for coating stents and a method of using the same is provided. The apparatus includes a first stent support and a second stent support for supporting stents. The first and second stent supports are positioned with respect to one another in an adjacent serial configuration such that one end of the first stent support extends from an end of the adjacent second stent support. A motor can be coupled to the first stent support to rotate the first stent support such that the rotation of the first stent support rotates the second stent support. The apparatus further includes an applicator for applying a coating composition to the stents.
Abstract:
Methods and compositions for the sustained release of treatment agents to treat an occluded blood vessel and affected tissue and/or organs are disclosed. Porous or non-porous bioabsorbable glass, metal or ceramic bead, rod or fiber particles can be loaded with a treatment agent, and optionally an image-enhancing agent, and coated with a sustained-release coating for delivery to an occluded blood vessel and affected tissue and/or organs by a delivery device.
Abstract:
The invention provides for a stent for implanting in a bodily lumen comprising a degradable structural element including: an abluminal layer comprising an active agent; and a luminal layer, wherein the abluminal layer has a faster degradation rate than the luminal layer.
Abstract:
A therapeutic agent delivery system formed of a specific type of poly(ester amide) (PEA), a therapeutic agent, and a water miscible solvent is described herein. A method of delivering the therapeutic agent delivery system by delivering the therapeutic agent delivery system formed of a PEA polymer, a therapeutic agent, and a water miscible solvent to a physiological environment and separating the phase of the therapeutic agent delivery system to form a membrane from the polymer to contain the therapeutic agent within the physiological environment is also described. Additionally disclosed is a kit including a syringe and a therapeutic agent delivery system within the syringe.
Abstract:
The invention is directed to an implantable device, such as a stent, for delivering a therapeutic substance. The device includes a reservoir containing a therapeutic substance and an energy converter to cause the release of the substance.
Abstract:
The present invention relates to methods of controlling the loading of a bioactive agent into a polymeric carrier to be coated on an implantable medical device to achieve controlled release of the bioactive agent.