摘要:
A field emission cathode device includes an insulative substrate, a number of cathode electrodes, and a number of liner electron emission units. The insulative substrate has a top surface and a bottom surface. The insulative substrate defines a number of openings. The cathode electrodes are located on the bottom surface. Each of the linear electron emission units has a first portion secured between the insulative substrate and one corresponding cathode electrode and a second portion received in one corresponding opening.
摘要:
A method for making a thermionic electron source includes the following steps: (a) supplying a substrate; (b) forming a first electrode and a second electrode thereon; and (c) spanning a carbon nanotube film structure on a surface of the first electrode and the second electrode with a space defined between the thermionic emitter and the substrate.
摘要:
A field emission device includes a transparent plate, an insulating substrate, one or more grids located on the insulating substrate. Each grid includes a first, second, third and fourth electrode down-leads and a pixel unit. The first, second, third and fourth electrode down-leads are located on the periphery of the grid. The first and the second electrode down-leads are parallel to each other. The third and the fourth electrode down-leads are parallel to each other. The pixel unit includes a phosphor layer, a first electrode, a second electrode and at least one electron emitter. The first electrode and the second electrode are separately located. The first electrode is electrically connected to the first electrode down-lead, and the second electrode is electrically connected to the third electrode down-lead. The phosphor layer is located on the corresponding first electrode.
摘要:
A thermionic emission device includes an insulating substrate, and one or more grids located thereon. Each grid includes a first, second, third and fourth electrode down-leads located on the periphery thereof, and a thermionic electron emission unit therein. The first and second electrode down-leads are parallel to each other. The third and fourth electrode down-leads are parallel to each other. The first and second electrode down-leads are insulated from the third and fourth electrode down-leads. The thermionic electron emission unit includes a first electrode, a second electrode, and a thermionic electron emitter. The first electrode and the second electrode are separately located and electrically connected to the first electrode down-lead and the third electrode down-lead respectively. The thermionic electron emitter includes at least one carbon nanotube wire.
摘要:
A heater includes a substrate, a plurality of first electrode down-leads, a plurality of second electrode down-leads and a plurality of heating units. The plurality of first electrode down-leads are located on the substrate in parallel to each other and the plurality of second electrode down-leads are located on the substrate in parallel to each other. The first electrode down-leads cross the second electrode down-leads and define a plurality of grids. One heating unit is located in each grid. Each heating unit includes a first electrode, a second electrode and a heating element. The heating element includes a carbon nanotube structure.
摘要:
A method for fabricating a surface-conduction electron emitter includes the steps of: (a) providing a substrate; (b) disposing two lower layers on the surface of the substrate, the two lower layers are parallel and apart from each other; (c) disposing a plurality of carbon nanotube elements on the lower layers; (d) disposing two upper layers on the two lower layers, and thereby, sandwiching the carbon nanotube elements therebetween; and (e) forming a micro-fissure between the carbon nanotube elements.
摘要:
A thermionic emission device includes an insulating substrate, and one or more grids located thereon. Each grid includes a first, second, third and fourth electrode down-leads located on the periphery thereof, and a thermionic electron emission unit therein. The first and second electrode down-leads are parallel to each other. The third and fourth electrode down-leads are parallel to each other. The first and second electrode down-leads are insulated from the third and fourth electrode down-leads. The thermionic electron emission unit includes a first electrode, a second electrode, and a thermionic electron emitter. The first electrode and the second electrode are separately located and electrically connected to the first electrode down-lead and the third electrode down-lead respectively. The insulating substrate comprises one or more recesses that further insulate the thermionic electron emitters from the substrate.
摘要:
An exemplary electron emission device includes an electron emitter, an anode opposite to and spaced apart from the electron emitter, a first power supply circuit, and a second power supply circuit. The first power supply circuit is configured for electrically connecting the electron emitter and the anode with a power supply to generate an electric field between the electron emitter and the anode. The second power supply circuit is configured for electrically connecting the electron emitter with a power supply to supply a heating current for heating the electron emitter whereby electrons emit therefrom. Methods for generating an emission current with a relatively higher stability also are provided.
摘要:
A solar collector includes a substrate having a top surface and a bottom surface opposite to the upper surface, a sidewall, a transparent cover, and a heat-absorbing layer. The sidewall is arranged on the top surface of the substrate. The transparent cover is disposed on the sidewall opposite to the substrate to form a sealed chamber with the substrate together. The heat-absorbing layer is disposed on the upper surface of the substrate and includes a carbon nanotube structure.
摘要:
A method for making a thermionic electron source includes the following steps: (a) supplying a substrate; (b) forming a first electrode and a second electrode thereon; and (c) spanning a carbon nanotube film structure on a surface of the first electrode and the second electrode with a space defined between the thermionic emitter and the substrate.