Abstract:
A base station comprises a controller configured to construct a resource matrix comprising resource units. The controller also is configured to allocate a plurality of resource units within the resource matrix containing resource units that carry Enhanced-Multicast Broadcast Service (E-MBS) data, and to generate at least two indicator values. The at least two indicator values are configured to identify at least some of the plurality of resource units containing E-MBS data within the resource matrix. The base station further comprises a transmitter configured to transmit the E-MBS data placed in the resource matrix and the at least two indicators to a subscriber station.
Abstract:
A system and method for inter-cell interference avoidance. A base station is configured to perform interference avoidance. The base station receives feedback information from either a second base station or a subscriber station served by the second base station. The base station selects a codebook vectors or matrices for transmission to subscriber stations based, at least in part, on a portion of the feedback information. The base station is further configured to select which subscriber stations will participate in interference avoidance calculations.
Abstract:
Systems and methods are disclosed for use in a wireless communication system including a base station configured to identify unused PRBS. This base station includes a communication unit that is in communication with at least one subscriber station and a processor configured to identify at least one PRB as unused. Upon determining that at least one PRB is unused, the base station transmits information related to the unused PRBs to the at least one subscriber station through a control message.
Abstract:
Methods and apparatus for transmitting Asynchronous Hybrid Automatic Repeat reQuest (ARQ) process identities in a wireless communication system. A linking scheme is established between at least two sets of process identities of two respective corresponding codewords. When a first process identity is selected from among a first set of process identities of a first codeword, a second process identity may be derived in dependence upon the first process identity and the established linking scheme. Finally, a first packet from the first codeword is transmitted using a first transmission channel indicated by the first process identity, and a second packet is transmitted from the second codeword using a second transmission channel indicated by the second process identity. In addition, a control message including only the first process identity is transmitted.
Abstract:
Methods and circuits for assigning pilot boosting factors and calculating traffic to pilot ratios in a wireless communication system. The data to be transmitted is first modulated to generate a plurality of data modulation symbols. The plurality of data modulation symbols and a plurality of reference signal symbols are mapped into transmission resources of each of a plurality of antennas in accordance with a transmit diversity scheme. The transmission resources of each of the antennas are divided into a plurality of subcarriers in a frequency domain and a plurality of time units in a time domain. Then, a power scaling factor are assigned for data modulation symbols on each of the antennas in dependence upon power levels of the reference signal symbols to maintain a fixed power level across the plurality of antennas in each time unit. Finally, the data modulation symbols and the reference signal symbols are transmitted via the plurality of antennas in accordance with the mapping scheme and the assigned scaling factors.
Abstract:
The present invention relates to methods and apparatus for establishing a precoding codebook for a Multiple Input Multiple Output (MIMO) wireless communication system. The precoding codebook includes a plurality of codebook entries. Each codebook entry includes four sets of vectors for four respective corresponding transmission ranks. The vectors may be predetermined, or generated from source unitary matrices. In addition, the codebook is fully nested.
Abstract:
A method and apparatus for channel interleaving in a wireless communication system. In one aspect of the present invention, the data resource elements are assigned to multiple code blocks, and the numbers of data resource elements assigned to each code block are substantially equal. In another aspect of the present invention, a time-domain-multiplexing-first (TDM-first) approach and a frequency-domain-multiplexing-first (FDM-first) approach are proposed. In the TDM-first approach, at least one of a plurality of code blocks are assigned with a number of consecutive data carrying OFDM symbols. In the FDM-first approach, at least one of the plurality of code blocks are assigned with all of the data carrying OFDM symbols. Either one of the TDM first approach and the FDM-first approach may be selected in dependence upon the number of the code blocks, or the transport block size, or the data rate.
Abstract:
A method includes separating resource elements from multiple code blocks into different groups, and decoding the code bits of the resource elements within each group without waiting for a completed reception of a transport block to start decoding.A method includes separating coded bits from multiple code blocks into different groups, and decoding the code blocks containing coded bits within each group. A first CRC is attached to the transport block and a second CRC is attached to at least one code block from the transport block.An improved channel interleaver design method including mapping from coded bits of different code blocks to modulation symbols, and mapping from modulation symbols to time, frequency, and spatial resources, to make sure each code block to get roughly the same level of protection.
Abstract:
A method and apparatus for coordinating the resource assignment of a plurality of channel segments in a wireless communication system are disclosed. The method includes the steps of determining a number of resources available, determining a number of channel segments to include in a frame, determining a number of resource zones to be used for resource assignment of the plurality of channel segments, assigning each channel segment of the number of channel segments to a resource zone of the number of resource zones, and selecting a resource from the number of resources for transmitting said each channel segment in said resource zone.
Abstract:
A method for a base station to support network entry of a mobile station in a communication system is provided. The method includes transmitting to the mobile station each of a plurality of transmitted network entry signals over a preferred downlink beam corresponding to the transmitted network entry signal. Each of a plurality of received network entry signals is received from the mobile station over a preferred uplink beam corresponding to the received network entry signal. Each of the transmitted network entry signals comprises the preferred uplink beam corresponding to a subsequently received network entry signal, and each of the received network entry signals comprises the preferred downlink beam corresponding to a subsequently transmitted network entry signal.