Abstract:
Disclosed is a light guiding valve apparatus including a light valve, a two dimensional light emitting element array and an input side arranged to reduce light reflection for providing large area directional illumination from localized light emitting elements with low cross talk. A waveguide includes a stepped structure, in which the steps may include extraction features hidden to guided light propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Stray light falling onto a light input side of the waveguide is at least partially absorbed.
Abstract:
A new beam deflection approach is provided for displaying images in autostereoscopic format. Conceptually, polarized light from a display is directed into specific viewing regions using a polarization-sensitive beam deflection sub-system that comprises, in exemplary embodiments, an active liquid crystal quarter-wave plate modulator and a passive cycloidal grating element, such as a diffractive waveplate. Specific embodiments may comprise an illumination system that both floods an LCD panel and creates a defined eye pupil region, from within which the display is viewable. Deflecting the pupil region between left and right eye positions in synchronization with displayed frame sequential stereo image data creates desirable autostereoscopic 3D viewing. Other embodiments employ a similar beam deflection sub-system in conjunction with a means of viewing subsets of pixels from different viewing positions, such as a parallax barrier or lenslet array, allowing freedom of head movement while maintaining stereo viewing.
Abstract:
An architecture comprising laser sub-modules may be used to reach the optical output powers desired for projection display for 2D and 3D viewing. Monitoring and control of the laser sub-modules within the architecture may be performed to achieve desired performance metrics.
Abstract:
An autostereoscopic display comprising a temporally multiplexed display arranged to provide viewing windows in a range around 45 degrees to achieve landscape and portrait viewing in cooperation with an observer tracking system. The temporally multiplexed display may comprise a stepped waveguide imaging directional backlight.
Abstract:
Disclosed herein are apparatuses and methods for reclaiming the full field of view (FOV) of the original camera lens in a stereoscopic image capture system using an anamorphic attachment. Also disclosed are apparatuses and methods of projecting stereoscopic images on a fixed size screen from a single projector that was initially designed primarily for 2D operation. An exemplary apparatus may comprise an anamorphic afocal converter configured to halve a FOV of a camera or projector into two optical paths, and convert the halved FOVs into two full FOVs of the camera or projector. Such an apparatus may further comprise reflecting elements cooperatively arranged to direct two rectified images at a camera sensor or projection screen, where one or more reflecting elements receive the first of the two full FOVs and one or more reflecting elements receive the second of the two full FOVs.
Abstract:
An enhanced liquid crystal display design is provided having relatively fast response time particularly useful in high speed or highly intense applications, such as stereoscopic or autostereoscopic image display. The liquid crystal display device is configured to display stereoscopic images, and comprises an LCD panel and control electronics configured to drive the LCD panel to a desired 10 stereoscopic display state. The control electronics are configured to employ transient phase switching and overdrive the LCD panel to a desired state to enable relatively rapid display of stereoscopic images.
Abstract:
A stiffening strip at selected edges of a screen may enable the use and mounting of a high-elastic modulus substrate screen material. Such screen materials may be engineered to provide polarization-preserving characteristics, and be applied to or part of the high-elastic modulus substrate. Furthermore, the stiffening strip may enable the use of screen vibration techniques to reduce speckle in display applications that use projection screens, particularly those display applications using illumination sources prone to speckle such as laser-based projection. The screen vibration may be provided by a vibrating device attached to the stiffening strip.
Abstract:
Described are stereoscopic eyewear, methods and systems for manufacturing the same. The stereoscopic eyewear includes right- and left-eye filters for analyzing stereoscopically-encoded polarized light. The filters are made using a roll-type polarizer having an absorption axis. A polymer alignment layer is deposited on a portion of the roll-type polarizer. A liquid crystal polymer (LCP) layer is deposited on the polymer alignment layer. The polymer alignment layer and LCP layer provides at least one retarder having an optic axis at a predetermined angle to the absorption axis of the roll-type polarizer. Described embodiments include a polymer alignment layer that may include at least one of a linearly photopolymerizable polymer (LPP), a brushed or rolled polyimide.
Abstract:
Disclosed herein are techniques for the reduction speckle of a projection display system using novel lenslet integrators and related methods. In one embodiment, a lenslet integrator system for reducing speckle on a display screen may comprise a first lenslet array configured to receive incoming light for use in displaying an image on a display screen. Specifically, the first lenslet array has motion sufficient to reduce speckle by averaging multiple speckle patterns across its array. Such an exemplary system may also include a second lenslet array configured to receive light that is roughly focused from the moving first lenslet array, due to the motion of the first array. In addition, such systems may also include an output lens configured to receive light focused from the second lenslet array for output from the system for illumination of the display screen.
Abstract:
This disclosure provides a technique for controlling the slew rate and number of transition segments used to move the LC drive voltage level from one voltage to another. In one embodiment, a method of controlling a polarization modulator in a polarization-based stereoscopic display device may comprise providing digital signals to each of a plurality of drive circuits to generate a drive voltage from each drive circuit, where the drive voltages drive the polarization modulator. Such an exemplary method may also include determining a time sequential list of transition specifications configured to provide discrete transitions in one or more of the drive voltages. Then, in such methods, the digital signals provided to each of the one or more drive circuits receiving a transition may be adjusted, in accordance with the time sequential list, thereby altering their drive voltages based on the transition specifications.