Abstract:
A polarization conversion system separates light from an unpolarized image source into a first state of polarization (SOP) and an orthogonal second SOP, and directs the polarized light on first and second light paths. The SOP of light on only one of the light paths is transformed to an orthogonal state such that both light paths have the same SOP. A polarization modulator temporally modulates the light on the first and second light paths to first and second output states of polarization. First and second projection lenses direct light on the first and second light paths toward a projection screen to form substantially overlapping polarization encoded images. The polarization modulator may be located before or after the projection lenses. The polarization-encoded images may be viewed using eyewear with appropriate polarization filters.
Abstract:
A polarization conversion system (PCS) is located in the output light path of a projector. The PCS may include a polarizing beam splitter, a polarization rotating element, a reflecting element, and a polarization switch. Typically, a projector outputs randomly-polarized light. This light is input to the PCS, in which the PCS separates p-polarized light and s-polarized light at the polarizing beam splitter. P-polarized light is directed toward the polarization switch on a first path. The s-polarized light is passed on a second path through the polarization rotating element (e.g., a half-wave plate), thereby transforming it to p-polarized light. A reflecting element directs the transformed polarized light (now p-polarized) along the second path toward the polarization switch. The first and second light paths are ultimately directed toward a projection screen to collectively form a brighter screen image in cinematic applications utilizing polarized light for three-dimensional viewing.
Abstract:
An imaging directional backlight apparatus including a waveguide, a light source array, for providing large area directed illumination from localized light sources. The waveguide may include a stepped structure, in which the steps may further include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Viewing windows are formed through imaging individual light sources and hence defines the relative positions of system elements and ray paths. The uncorrected system creates non-illuminated void portions when viewed off-axis preventing uniform wide angle 2D illumination modes. The system may be corrected to remove this non uniformity at wide angles through the introduction of additional sources away from the system's object plane, additional imaging surfaces, and/or by altering ray paths.
Abstract:
Disclosed is a manufacturing method for a stepped imaging directional backlight apparatus which may include a structured optical film and a tapered body. The structured optical film may include multiple optical functions and may be assembled by folding onto the tapered body, reducing cost and complexity of manufacture.
Abstract:
Disclosed is a light guiding valve apparatus comprising an optical valve, a two dimensional light source array and a focusing optic for providing large area collimated illumination from localized light sources. A stepped waveguide may be a stepped structure, in which the steps may be extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. A two dimensional array of viewing windows may be produced. Such controlled illumination may provide for efficient, multi-user autostereoscopic displays with wide viewing freedom and low cross talk and near-eye displays that are substantially transparent.
Abstract:
Backlit display systems, such as those employed with LED backlit displays, including those configured for autostereoscopic operation, may employ synchronization between the backlight and the presentation of sequential left and right eye images at a frame rate exceeding approximately 100 Hz. To successfully directionally illuminate isolated frames, the disclosed principles provide for segmenting the directional illumination and introducing a phase shifted, synchronized, pulsed drive scheme for the illumination segments. Accordingly, the principles disclosed herein are directed to segmented directional illumination systems and related techniques for segmented directional backlight illumination.
Abstract:
Disclosed embodiments relate to a stereoscopic projection system and methods. An exemplary disclosed projection system includes an optical component disposed between the lenses of a lens arrangement. An exemplary lens arrangement includes a first power group, a second power group, and an aperture stop. In an embodiment, the optical component is disposed between the first power group and the aperture stop. In an exemplary embodiment, the optical component is proximate to the aperture stop. By disposing the optical component closer to or proximate to the aperture stop in the lens arrangement, various benefits may be realized, including improved contrast uniformity.
Abstract:
Disclosed is a light guiding valve apparatus including at least one transparent stepped waveguide optical valve for providing large area collimated illumination from localized light sources, and at least one further illumination source. A stepped waveguide may be a stepped structure, where the steps include extraction features hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Such controlled illumination may provide for efficient, multi-user autostereoscopic displays as well as improved 2D display functionality. Light from a separate illumination source may pass through the transparent stepped waveguide optical valve to provide at least one further additional illumination function.
Abstract:
An autostereoscopic display comprising a temporally multiplexed display arranged to provide viewing windows in a range around 45 degrees to achieve landscape and portrait viewing in cooperation with an observer tracking system. The temporally multiplexed display may comprise a stepped waveguide imaging directional backlight.
Abstract:
Disclosed is a method for stereoscopic numerical aberration compensation. One embodiment of this may be implemented as a software module which may be invoked after the display content has been copied, as in the case of prepared content such as a movie, or rendered, as in the case of dynamically-generated content, such as a game or design visualization application. This scheme windows the image in the frame buffer in-place, as a final processing step prior to transmission to the display. A less-tightly-integrated embodiment modifies the data during transmission, with minimal additional buffering.