Abstract:
A compact five-speed transmission planetary gear train includes a first, second, third, fourth and fifth planetary gear sets between an input and an output as well as first, second, third and fourth brakes and first and second clutches. The first, second, third and fourth brakes and first and second clutches are selectively actuatable to provide five different forward speeds and a plurality of different reverse speeds between the input and the output.
Abstract:
A transmission having input and output shafts, shifting elements and planetary gearsets including sun and ring gears, planetary gearwheels and a carrier. The carrier of the first gearset is fixed to the input. The ring gear of the second gearset can be connected by a first shifting element to the housing and by a second shifting element to the carrier of the second gearset. The ring gear of the first gearset is fixed to the sun gear of the second gearset. The sun gear of the first gearset can be connected by a third shifting element to the housing, or is fixed to the sun gear of the second gearset and the ring gear of the first gearset can be connected by a third shifting element fixed to the housing. The shifting elements are arranged within the housing and accessible from outside the housing.
Abstract:
A compact five-speed transmission planetary gear train includes a first, second, third, fourth and fifth planetary gear sets between an input and an output as well as first, second, third and fourth brakes and first and second clutches. The first, second, third and fourth brakes and first and second clutches are selectively actuatable to provide five different forward speeds and a plurality of different reverse speeds between the input and the output.
Abstract:
A drive train for a hybrid vehicle, and which includes an internal combustion engine, at least one electric machine, a first planetary gear and a second planetary gear between a transmission input shaft, which is in drive connection to the output shaft of the internal combustion engine, and a transmission output shaft.
Abstract:
A power transmission mechanism transferring a power output from an engine to a propeller includes a transmission planetary gear train that transforms the output power of the engine before it is transferred to the propeller. The transmission planetary gear train includes a transmission sun gear, a transmission double planetary gear set, and a transmission internal gear, in which the transmission sun gear is connected via the first clutch to the input end shaft extending into the engine, and the transmission sun gear is also connected via the second one-way clutch to the housing. In addition, the transmission double planetary gear set is connected via the second clutch to the input end shaft extending into the engine, and the transmission double planetary gear set is also connected via the first one-way clutch to the housing. Further, the transmission internal gear is connected to the output end shaft extending toward the propeller.
Abstract:
The present invention broadly comprises a combination torque transmission system for a vehicle including a planetary gear set in a rotating housing and a gear set device in a stationary housing. The gear set has an input arranged for connection to a torsional output for an engine. The gear set device has an input connected to an output of the planetary gear set. In some aspects, the at least one gear set device is a planetary transmission such as a Ravigneaux gearset, a Simpson gearset, a plurality of simple gearsets, or a Lepelletier six speed arrangement. The gear set device includes a plurality of gear ratios and the planetary gear set is configured to augment the plurality of gear ratios by adding at least one first gear ratio to the plurality of gear ratios. In some aspects, the planetary gear set is configured to double the number of gear ratios.
Abstract:
A portable power tool with a housing, a motor having a motor output member, a driven member and a transmission. The transmission, which is located in the housing, is configured to receive a rotary input from the motor output member and to produce a rotary output that is transmitted to the output spindle. The transmission has a plurality of planetary transmission stages, each of which including a ring gear, a planet carrier and a plurality of planet gears that are supported by the planet carrier for meshing engagement with the ring gear. The transmission further includes at least one member that may be configured in a first condition, which renders at least one of the planetary transmission stages operable in an active mode, and a second condition, which renders at least one of the planetary transmission stages operable in an inactive mode. The transmission is operable in at least three overall speed reduction ratios.
Abstract:
A multi-speed transmission assembly for a rotary power tool. The transmission assembly includes a plurality of transmission stages, with at least two of the transmission stages employing a movable reduction element that permits the transmission stage to be operated in an active mode and an inactive mode. The movable reduction elements are coupled to a switching mechanism that switches the reduction elements in a predetermined manner to provide at least three-gear reduction or speed ratios.
Abstract:
A high acceleration time shift control apparatus and method for a vehicle is provided. The high acceleration time shift control apparatus includes a transmission which achieves plural shift speeds whose gear ratios are different from each other; and a high acceleration time upshifting control device which changes a shift speed of the transmission to a higher speed based on a predetermined determination rotational speed such that an input rotational speed of the transmission substantially reaches a target maximum rotational speed when a request for high acceleration is made by a driver. The high acceleration time upshifting control device outputs an upshift command for performing an upshift when the determination rotational speed reaches a predetermined shift determination speed; calculates an actual ineffective time until shifting is actually started and the input rotational speed starts decreasing after the upshift command is output; computes a virtual maximum rotational speed, that is a maximum rotational speed when the input rotational speed changes at a reference rotational speed change rate, based on the input rotational speed when the upshift command is output, the ineffective time and the predetermined reference rotational speed change rate; and changes the shift determination speed such that the virtual maximum rotational speed comes close to the target maximum rotational speed and then performs learning.