Abstract:
Systems and methods for controlling transmissions having CVTs are disclosed with multiple modes and gearing arrangements for range enhancements, where embodiments include synchronous shifting to allow the transmission to achieve a continuous range of transmission ratios, while minimizing “empty” cycling of the CVT during mode shifts. Embodiments provide for wide ratio range and performance and efficiency flexibility, while maximizing CVT usage through synchronous shifting.
Abstract:
A bicycle gear hub includes an axle, planetary gear modules, one-way clutches and a shift mechanism. The planetary gear modules are connected in series at the axle. The shift mechanism includes a shift actuator and control pawls movably disposed at different positions of the axle. The shift actuator includes recess portions to control opening and closing of a control protrusion of one control pawl, and further to control a sun gear of the corresponding planetary gear module to the axle. When a high gear is shifted to a low gear, a rotational direction of the shift actuator is identical to a rotational direction for closing the control pawl.
Abstract:
Provided are an electric vehicle transmission including an improved one-way clutch. An electric vehicle transmission includes a sun gear unit connected to a transmission motor, a plurality of planetary gear units connected to the sun gear unit, and a ring gear unit connected to the planetary gear units, and further includes a cage unit arranged to surround the plurality of planetary gear units at an inner side thereof, a housing unit arranged at an outer side of the cage unit and having a hollow therein, at least one guide unit arranged between the cage unit and the housing unit, and an adjustment unit configured to adjust a position of the cage unit with respect to the housing unit.
Abstract:
A method for operating a drivetrain of a motor vehicle includes elevating a system pressure acting on a plurality of shift elements (A, B, C, D, E, F) when one of at least one positively locking shift element (A, F) is closed in a force-locking-free state, increasing a torque output by a drive assembly (15) and then subsequently reducing the torque output by the drive assembly (15) while the system pressure is elevated by an intervention with the drive assembly (15), and reducing the system pressure after reducing the torque output by the drive assembly (15). The one of the at least one positively locking shift element (A, F) closed in the force-locking-free state or another one of the at least one positively locking shift element (A, F) is opened while the system pressure is elevated and the torque output by the drive assembly (15) changes.
Abstract:
A transmission for a motor vehicle includes a first planetary gear set with at least three central gears which are formed by a ring gear and two sun gears or by two ring gears and one sun gear. A second planetary gear set includes two central gears which are formed by one ring gear and one sun gear. One of the central gears of the second planetary gear set is constantly connected in a torque-proof manner to one of the central gears of the first planetary gear set. The one of the central gears of the first planetary gear set differs from and is arranged in a common gear set plane with the one of the central gears of the second planetary gear set. A carrier of the first planetary gear set is constantly connected in a torque-proof manner to a carrier of the second planetary gear set.
Abstract:
Provided is an automatic transmission with which a switching mechanism thereof is hardly damaged even if the hydraulic pressure supplied to a hydraulic pressure control circuit temporarily changes. A control part ECU of the automatic transmission TM switches the first brake B1 to the reverse rotation preventing state when a signal indicating that the slider is at a position corresponding to the reverse rotation preventing state is received while the control unit ECU recognized that it has switched the first brake B1 to the fixed state.
Abstract:
A transmission (G) is provided with four planetary gear sets (P1, P2, P3, P4), several shafts (W1-W7) and a first, second, third, fourth and fifth shift element (B1, B2, K1, K2, K3), the selective meshing of which brings about different transmission ratio relationships between a transmission input shaft (GW1) and a transmission output shaft (GW2). The transmission (G) includes a sixth shift element (K4), through which the fifth shaft (W5) is connectable to the sun gear (So-P4) of the fourth planetary gear set (P4), either directly or through the second shift element (B2), and whereas the fourth shaft (W4) is connectable through the fourth shift element (K2) with the sun gear (So-P4) of the fourth planetary gear set (P4), either directly or through the second shift element (B2).
Abstract:
A clutch management system has a ramp actuator, an inner plate housing, an outer plate housing, and a clutch assembly. The clutch assembly may have a motor, a ratio adaptor, a primary sun gear, a secondary sun gear, a primary planet carrier and a secondary planet carrier. The primary sun gear is in contact with the ratio adaptor and primary planet gears. The primary planet gears are in contact with a ring gear. The primary planet carrier forms part of the ramp actuator. The second sun gear is connected to a housing and a secondary planet gears. The secondary planet gears are also in contact with the ring gear. A secondary planet carrier is connected. to the first plate of the ramp actuator.
Abstract:
A dog clutch for an automatic transmission includes a shape-memory alloy shifter. The shape-memory alloy shifter is configured for moving a sliding clutch along an axial direction between an engaged configuration and a disengaged configuration. A plurality of splines of a mating clutch meshes with a plurality of splines of the sliding clutch in the engaged configuration. A related automatic transmission is also provided.
Abstract:
A gearbox for a drive arrangement of a machine for driving the machine with variably adjustable rotational speed, with a first planet gear set, to which a first drive unit can be coupled and a second planet gear set, to which the machine can be coupled. The first planet gear set and the second planet gear set each comprise planet gears arranged on at least two common planet shafts which are mounted in a planet carrier. The planet carrier is rotatably mounted in a gearbox housing and can be driven by a second drive unit.