Abstract:
A communication system and a method which can reduce the effect of burst noise. The communication system comprises a controllable oscillator, a mixer, a decision circuit, a comparator, a loop filter, and a controller. The controllable oscillator generates an oscillating signal. The mixer coupled to the controllable receives input data and mixes the input data with the oscillating signal. The decision circuit receives the mixed input data and generates an estimated symbol. The comparator generates a decision error between the estimated symbol and the mixed input data. The loop filter coupled to the controllable oscillator filters the decision error, and generates a filtered decision error, and the controllable oscillator generates the oscillating signal according to the filtered decision error. The controller reduces a bandwidth of the loop filter according to the decision error.
Abstract:
A method and a system for reading radio frequency identification (RFID) tags are provided. The method includes the following steps. First, receive a tag signal from the RFID tag. Recover a data clock rate from the tag signal according to statistics of pulse lengths of the tag signal. Next, determine a frame synchronization point of a data frame following a preamble in the tag signal by a signal correlation between the preamble and a predetermined signal pattern according to the data clock rate. Finally, decode the data frame by using an adaptive Viterbi algorithm on an extended trellis diagram. The extended trellis diagram includes a plurality of nodes and a plurality of branches connecting the nodes. The nodes and the branches are arranged according to the modulation scheme of the data frame and possible variations of the data clock rate.
Abstract:
Present invention provides a pointing device with a resolution-setting hotkey and a setting method thereof. The pointing device comprises a resolution-setting hotkey, a microprocessor and an optical sensor. The present pointing device has a default x-axis resolution and a default y-axis resolution and they are of the same value. By pressing the hotkey, a resolution-adjusting signal is generated to make the x-axis resolution is different from the y-axis resolution.
Abstract:
A connector is provided for coupling a computer peripheral device with a RJ11 or RJ45 data communication socket. The connector includes a first connecting part and a second first connecting part. The first connecting part has a shape mating with said data communication socket. The second connecting part includes a magnetic element such that the connector is attachable onto said computer peripheral device.
Abstract:
A high-voltage device structure includes a high-voltage device disposed on a semiconductor substrate. The semiconductor includes an active region and an isolation region, and the high-voltage device is disposed in the active region. The high-voltage device structure includes a source diffusion region of a first conductive type, a drain region of the first conductive type, and a gate longer than the source diffusion region and the drain diffusion region so as to form spare regions on both sides of the gate. The isolation region is outside the active region and surrounds the active region. In the isolation region, an isolation ion implantation region of a second conductive type and an extended ion implantation region are disposed to prevent parasitic current from being generating between the source diffusion region and the drain diffusion region.
Abstract:
An ergonomic inertial positioning system comprises a motion sensor, an angle sensor, and a processor. The motion sensor detects movement of an object. The angle sensor detects angle variation of the heading of the object. The processor determines motion status of the object based on detected data provided by the motion sensor and the angle sensor, and calculates displacement of the object utilizing the detected angle variation thereof based on the motion status.
Abstract:
A semiconductor substrate has at least one active area and a STI surrounding the active area. An N-well and an adjacent P-well are formed in the active area. A dummy gate is formed atop the border between the N-well and the P-well, while simultaneously forming gates for other MOS transistors on the semiconductor substrate. A spacer is formed on the periphery of each gate. Finally, an N-type ion implantation process and a P-type ion implantation process are performed to form a cathode and an anode for the silicon controlled rectifier device in the P-well and the N-well between the STI and the dummy gate.
Abstract:
A driving device for a fluorescent tube has a high frequency oscillator which outputs a high frequency AC signal. A pulse width modulator is connected to the high frequency oscillator for outputting a PWM harmonic frequency signal. A first power switch is connected to the pulse width modulator for being turned off during a positive half-cycle of the PWM harmonic frequency signal and being turned on during a negative half-cycle of the PWM harmonic frequency signal. A second power switch is connected to the pulse width modulator for being turned on during the positive half-cycle of the PWM harmonic frequency signal and being turned off during the negative half-cycle of the PWM harmonic frequency signal. A piezoelectric transformer includes a primary winding having two input terminals connected to the first power switch and the second power switch, respectively, and a center terminal connected to the output terminal of the pulse width modulator.
Abstract:
A reflective/transmissive scanner having a transmissive mode light source that is synchronously moved with the image-retrieving device. The scanner is provided with a scanner body having an upper surface with slots formed therethrough and a first transparent plate disposed in an aperture in the upper surface of the scanner body on which an object to be scanned is placed. A second transparent plate is provided in the lower surface of the scanner lid, corresponding slots being formed in the second transparent plate. A first support frame is disposed within the scanner body, with a reflective light source and an image retrieving device disposed thereupon, and a second support frame is disposed within the scanner lid, with a transmissive mode light source disposed thereupon. When the scanner lid is in a closed position, the first support frame and the second support frame are physically engaged through the slots, allowing the alignment between the transmissive mode light source and the image-retrieving device to be synchronously maintained.
Abstract:
A method for fabricating a flash memory cell is described. A conformal ultra thin oxide layer is formed on a substrate having a trench formed therein, followed by forming silicon nitride spacers on the portion of the ultra thin oxide layer which covers the sidewalls of the trench. The silicon nitride spacers are separated into a first silicon nitride spacer on the right sidewall and a second silicon nitride spacer on the left sidewall. Thereafter, a gate oxide layer is formed on the silicon nitride spacers, followed by forming a polysilicon gate on the gate oxide layer in the substrate. Subsequently, a source/drain region is formed on both sides of the polysilicon gate in the substrate.