Abstract:
A reactive energy compensator that can be electrically connected to an AC electrical network, including at least one input direct voltage bus, at least one voltage inverter including switches and first and second capacitors having first and second voltages at their terminals, control means for the switches, including computation means capable of generating a target control current, means for combining the target control current and the output current from the inverter, means for transmitting a control signal capable of driving the switches, and correction means for the control signals of the switches, the correction means being capable of adding a balancing current to the target control current, the balancing current being able to correct the target control current so as to reduce the difference between the values of the first and second voltages, the target control current being increased for an even harmonic of the network frequency.
Abstract:
A method of operating a power converter arrangement, the power converter arrangement includes a dc link and a dc load/source, an active rectifier/inverter having dc terminals connected to the dc link and is adapted to provide a variable dc link voltage between a maximum and a minimum limits, an interleaved buck converter having a plurality of converter circuits connected between the dc link and the dc load/source, wherein each converter circuit includes a first switch, a second switch, and a reactor, the method including determining one or more null values of dc link voltage with reference to the voltage across the dc load/source, and if a null value of dc link voltage is between the maximum and the minimum limits, controlling the active rectifier/inverter to provide a dc link voltage that is substantially the same as the null value of dc link voltage.
Abstract:
A mechanical assembly such as a torque transfer strut for a rotating superconducting machine. The torque transfer strut includes a composite tube having a first end received in a clamping fitting, which may include an end housing or lug, a clamping wedge screwed onto a threaded end housing, and an annular clamping member applying a radial clamping force to the first end of the composite tube at ambient temperature. When cooled, shrinkage of the end housing in the axial direction causes the annular clamping member to maintain or increase radial clamping force, causing the clamping wedge to apply increasing radial force to an inner member deflecting outwardly a plurality of axial fingers. The first end of the composite tube remains clamped between the inner member and an outer member, together defining an annular channel receiving the first end of the composite tube.
Abstract:
A power distribution system such as a marine power distribution and propulsion system. The system includes an ac busbar and a plurality of active front end power converters. Each AFE power converter includes a first active rectifier/inverter connected to the busbar and a second active rectifier/inverter connected to an electrical load such as an electric propulsion motor. Power sources are connected to the dc link of the AFE power converters and can be operated under the control of a power management controller or power management system.
Abstract:
The system (21) includes: a power transistor (22), a data medium (60) including data relating to the manufacturing tolerance (Tol) of at least one electric parameter of the transistor (22), an electric circuit (26) for controlling the transistor adapted so as to operate for a reference value of the parameter (VREF), an electric circuit (64) having an inductance of less than 100 nH and such that the assembly (70) formed with the circuit (64) and the transistor (22) has a value for the parameter, for which the deviation in absolute with the reference value is strictly less than the manufacturing tolerance (Tol).
Abstract:
A power supply system for a charge is provided. The power supply system includes a converter connected in input to a current source and in output to a charge, the converter being able to deliver a direct current to the charge and allow the circulation of the current in a single direction, from the current source to the charge and a circulation bus for an electric current, including a first end and a second end. The power supply system further includes a device for injecting an additional alternating voltage and at the second end of the circulation bus, the injection device being connected to the second end and a device for recovering the additional injected alternating voltage, the recovery device being connected between the first end of the bus and the charge, so as to supply the charge with electrical current.
Abstract:
A method of controlling a power system that includes an electrical machine, e.g., wind turbine generator, a power converter, a DC circuit and a dynamic braking system (DBS) having a braking circuit having a braking resistor and being connected in series to the DC circuit, is provided. The method includes operating the DBS and controlling operation of the electrical machine based on a prevailing temperature of the braking circuit, stopping the electrical machine and controlling the electrical machine to be restarted at its rated output power once the prevailing temperature of the braking resistor reaches or falls below a lower temperature threshold. The electrical machine may be restarted at a lower output power and after restarting, its output power can be increased based on a power starting profile as the braking resistor cools.
Abstract:
There is provided a power converter unit that can include an inverter and a plurality of batteries. The power converter unit can include a battery energy storage system (BESS) and an inverter. The BESS and the inverter can share at least one protection circuit.
Abstract:
A system and method of operating a pumped storage power plant using a double fed induction machine with a frequency converter in a rotor circuit is disclosed. A current target value for the rotor current frequency is determined based on a target power to be transmitted between an electrical grid and the double fed induction machine depending on measured actual operating variables. A current inadmissible synchronous deadband is determined depending on variables characterizing a current state of the pumped storage power plant. The synchronous deadband is determined by a permissible minimum required rotor current frequency or speed difference of the rotor speed from the synchronous speed for the stationary operation. The converter is controlled to generate voltages and currents with the current target value of the rotor current frequency if the current target value of the rotor current frequency or speed does not fall in the current inadmissible synchronous deadband.
Abstract:
This electrical energy distribution system comprises assembly of electrical energy generators each driven by a heat engine and supplying a distribution network; means for recovering the heat energy generated during the operation of the heat engines and for vaporizing a working fluid; steam turbine driven by the working fluid and associated with a generator connected to the distribution network for converting the recovered heat energy into electrical energy and at least one frequency converter arranged between the distribution network and an electrical load.It comprises means for controlling the frequency of the distribution network, where the flow rate of the vaporized working fluid is regulated to a maximum value.