Abstract:
A battery management system for a battery pack including a plurality of battery cells connected in series is provided. The battery management system includes a voltage divider, a plurality of switching units and a detection circuit. Each switching unit is corresponding to one of the battery cell and coupled between an anode of the corresponding battery cell and the voltage divider. When a control signal directs one of the switching units to turn on, the voltage divider divides a voltage difference transmitted from the one of the switching units to obtain a divided voltage signal, and transmits the divided voltage signal to the detection circuit, and the detection circuit detects the voltage difference according to the divided voltage signal, wherein the voltage difference is a voltage difference between an anode of the battery cell corresponding to the one of the switching units and a ground.
Abstract:
A microprocessor includes hardware registers that instantiate the Intel 64 Architecture R8-R15 GPRs. The microprocessor associates with each of the R8-R15 GPRs a respective unique MSR address. The microprocessor also includes hardware registers that instantiate the ARM Architecture GPRs. In response to an ARM MRRC instruction that specifies the respective unique MSR address of one of the R8-R15 GPRs, the microprocessor reads the contents of the hardware register that instantiates the specified one of the R8-R15 GPRs into the hardware registers that instantiate two of the ARM GPRs registers. In response to an ARM MCRR instruction that specifies the respective unique MSR address of one of the R8-R15 GPRs, the microprocessor writes into the hardware register that instantiates the specified one of the R8-R15 GPRs the contents of the hardware registers that instantiate two of the ARM Architecture GPRs registers. The hardware registers may be shared by the two Architectures.
Abstract:
A clock generator is provided. The clock generator includes a crystal oscillator, an inverter coupled to the crystal oscillator in parallel, a first circuit and a second circuit. The crystal oscillator has a first terminal and a second terminal The inverter generates a first signal and a second signal at the first and second terminals of the crystal oscillator, respectively. The first circuit coupled to the first terminal of the crystal oscillator generates a first clock signal with a constant frequency according to the first signal. The second circuit coupled to the second terminal of the crystal oscillator generates a second clock signal with a variable frequency according to the second signal.
Abstract:
Disclosed are various embodiments for providing networked applications that are segmented into multiple client-cached executable modules. Multiple networked applications are provided by an application server, and a module cache is maintained in a client. The client obtains a user invocation of a particular functionality associated with a networked application. One of the modules associated with the particular functionality is obtained by the client from the application server over a network in response to determining that the module is not already in the module cache. The module is executed by the client to provide the particular functionality. A data cache may be implemented that includes data blocks that have been used, are being used, or are predicted to be used by the networked application.
Abstract:
A signal generation device is provided to generate an output signal with constant frequency. The signal generation device includes a frequency-control circuit and a voltage-controlled delay line. The frequency-control circuit includes a pulse generator, generating a reference pulse signal according to a transition of the reference signal and a comparison pulse signal according to a transition of the comparison result signal, to re-shape the reference signal and the comparison result signal into narrow pulses suitable for clocking and resetting flip-flops.
Abstract:
An embodiment of the invention provides a calibration method for an initial discharging curve of a battery. The method includes: acquiring an initial discharging curve of a battery; measuring a first open circuit voltage at a first time point and a second open circuit voltage at a second time point; according to the initial discharging curve, acquiring a first discharge capacity corresponding to the first open circuit voltage and a second discharge capacity corresponding to the second open circuit voltage according to the initial discharging curve; calculating an ideal discharge capacity according to the first discharge capacity and the second discharge capacity; measuring an real discharge capacity between the first time point and the second time point; determining a total discharge capacity difference according to the ideal discharge capacity and the real discharge capacity to calibrate the initial discharging curve to generate a current discharging curve.
Abstract:
An embodiment of the invention provides a rechargeable battery module including a battery bank having serial connected battery units, a charging transistor providing a charging current to the battery bank, a balancing circuit for detecting and balancing voltage values of battery units and battery bank and a control chip. When a first voltage value of a first battery unit reaches a charge-off voltage, the control chip estimates a first unbalanced voltage difference between the first voltage and the minimal voltage among battery units. The control chip disables the charging transistor and estimates a second unbalanced voltage difference between voltages of the first battery unit and the battery unit having a minimal voltage. The control chip enables the balancing circuit to balance the first battery unit. When the voltage of the first battery is dropped by a calibration target, the charging transistor is enabled.
Abstract:
A rechargeable battery module including a plurality of battery cells connected in series, a charging transistor, a balancing circuit and a control chip. The charging transistor is operative to convey a charging current to charge the battery cells. Based on voltage levels of the battery cells, the control chip disables the charging transistor and controls the balancing circuit to perform a first stage battery balance process. After finishing the first stage battery balance process, the control chip enables the charging transistor to charge the battery cells again. After being switched to a constant voltage charging mode, the control chip controls the balancing circuit based on the voltage levels of the battery cells to perform a second stage battery balance process.
Abstract:
A method implemented in a graphics engine for decoding image blocks to derive an original image is provided. The method comprises receiving at least one encoded image data block at a block decoder, the at least one encoded image data block comprising a plurality of codewords and a bitmap. The method further comprises determining a block type based on the plurality of codewords and selecting a decoder unit among a plurality of decoder units in accordance with the block type.
Abstract:
An apparatus is provided for charging a Universal Serial Bus (USB) device according to an optimal charging mode. The apparatus includes a charging module that is configured to obtain a descriptor from the USB device upon detection of the USB device on a USB bus. The charging module includes one or more descriptor entries disposed in a memory and a controller. The one or more descriptor entries include descriptor data, for matching the descriptor to a specific descriptor entry, and charging data, that specifies the optimal charging mode for the USB device. The controller is coupled to the memory, and is configured to match the descriptor to the specific descriptor entry, and is configured to initiate the optimal charging mode on the USB bus according to the charging data.