Abstract:
Methods of fabricating a polymeric implantable device with improved fracture toughness through annealing, nucleating agents, or both are disclosed herein. A polymeric construct that is completely amorphous or that has a very low crystallinity is annealed with no or substantially no crystal growth to increase nucleation density. Alternatively, the polymer construct includes nucleating agent. The crystallinity of the polymer construct is increased with a high nucleation density through an increase in temperature, deformation, or both. An implantable medical device, such as a stent, can be fabricated from the polymer construct after the increase in crystallinity.
Abstract:
Methods for increasing the fracture resistance of a polymer stent's drug-polymer coating and scaffolding including applying a coating and crimping using techniques that increase the resistance to fracture in the coating layer and scaffolding and scaffolding.
Abstract:
Methods of fabricating a polymeric implantable device with improved fracture toughness through annealing, nucleating agents, or both are disclosed herein. A polymeric construct that is completely amorphous or that has a very low crystallinity is annealed with no or substantially no crystal growth to increase nucleation density. Alternatively, the polymer construct includes nucleating agent. The crystallinity of the polymer construct is increased with a high nucleation density through an increase in temperature, deformation, or both. An implantable medical device, such as a stent, can be fabricated from the polymer construct after the increase in crystallinity.
Abstract:
Polymer stents with break-away links and methods of forming the links for improved stent retention on an expandable member during delivery are disclosed.