摘要:
Capacitive coupling, and attendant cross-talk, is reduced by increasing the distance between wire surfaces in integrated circuit applications. This is done by changing wire shape from the conventional rectangular cross-section. A cross-section which consists of a rectangular portion and a shaped, triangular portion is created, having the effect of increasing the effective distance between adjacent conductors. Cross-sectional area of wires is maintained and thus the current carrying capacity is maintained. The wire shapes may be produced using several alternate methods.
摘要:
Embodiments of the invention provide a relatively uniform width fin in a Fin Field Effect Transistors (FinFETs) and apparatus and methods for forming the same. A fin structure may be formed such that the surface of a sidewall portion of the fin structure is normal to a first crystallographic direction. Tapered regions at the end of the fin structure may be normal to a second crystal direction. A crystallographic dependent etch may be performed on the fin structure. The crystallographic dependent etch may remove material from portions of the fin normal to the second crystal direction relatively faster, thereby resulting in a relatively uniform width fin structure.
摘要:
Embodiments of the invention provide a relatively uniform width fin in a Fin Field Effect Transistors (FinFETs) and apparatus and methods for forming the same. A fin structure may be formed such that the surface of a sidewall portion of the fin structure is normal to a first crystallographic direction. Tapered regions at the end of the fin structure may be normal to a second crystal direction. A crystallographic dependent etch may be performed on the fin structure. The crystallographic dependent etch may remove material from portions of the fin normal to the second crystal direction relatively faster, thereby resulting in a relatively uniform width fin structure.
摘要:
A semiconductor structure that includes a monocrystalline germanium-containing layer, preferably substantially pure germanium, a substrate, and a buried insulator layer separating the germanium-containing layer from the substrate. A porous layer, which may be porous silicon, is formed on a substrate and a germanium-containing layer is formed on the porous silicon layer. The porous layer may be converted to a layer of oxide, which provides the buried insulator layer. Alternatively, the germanium-containing layer may be transferred from the porous layer to an insulating layer on another substrate. After the transfer, the insulating layer is buried between the latter substrate and the germanium-containing layer.
摘要:
Semiconductor device structures for use with bipolar junction transistors and methods of fabricating such semiconductor device structures. The semiconductor device structure includes a semiconductor body having a top surface and sidewalls extending from the top surface to an insulating layer, a first region including a first semiconductor material with a first conductivity type, and a second region including a second semiconductor material with a second conductivity type. The first and second regions each extend across the top surface and the sidewalls of the semiconductor body. The device structure further includes a junction defined between the first and second regions and extending across the top surface and the sidewalls of the semiconductor body.
摘要:
Semiconductor device structures and fabrication methods for field effect transistors in which a gate electrode is provided with an air gap or void disposed adjacent to a sidewall of the gate electrode. The void may be bounded by a dielectric spacer proximate to the sidewall of the gate electrode and a dielectric layer having a spaced relationship with the dielectric spacer. The methods of the invention involve the use of a temporary spacer consisting of a sacrificial material supplied adjacent to the sidewall of the gate electrode, which is removed after the dielectric layer is formed.
摘要:
Methods of fabricating a semiconductor structure in which a body of monocrystalline silicon is formed on a sidewall of a sacrificial mandrel and semiconductor structures made by the methods. After the body of monocrystalline silicon is formed, the sacrificial material of the mandrel is removed selective to the monocrystalline silicon of the body. The mandrel may be composed of porous silicon and the body may be fabricated using either a semiconductor-on-insulator substrate or a bulk substrate. The body may be used to fabricate a fin body of a fin-type field effect transistor.
摘要:
Semiconductor device structures for use with bipolar junction transistors and methods of fabricating such semiconductor device structures. The semiconductor device structure comprises a semiconductor body having a top surface and sidewalls extending from the top surface to an insulating layer, a first region including a first semiconductor material with a first conductivity type, and a second region including a second semiconductor material with a second conductivity type. The first and second regions each extend across the top surface and the sidewalls of the semiconductor body. The device structure further comprises a junction defined between the first and second regions and extending across the top surface and the sidewalls of the semiconductor body.
摘要:
A semiconductor structure for a dynamic random access memory (DRAM) cell array that includes a plurality of vertical memory cells built on a semiconductor-on-insulator (SOI) wafer and a body contact in the buried dielectric layer of the SOI wafer. The body contact electrically couples a semiconductor body with a channel region of the access device of one vertical memory cell and a semiconductor substrate of the SOI wafer. The body contact provides a current leakage path that reduces the impact of floating body effects upon the vertical memory cell. The body contact may be formed by an ion implantation process that modifies the stoichiometry of a region of the buried dielectric layer so that the modified region becomes electrically conductive with a relatively high resistance.
摘要:
Embodiments of the invention generally relate to the field of semiconductor devices, and more specifically to fin-based junction diodes. A portion of a doped semiconductor fin may protrude through a first doped layer. An intrinsic layer may be disposed on the protruding semiconductor fin. A second semiconductor layer may be disposed on the intrinsic layer, thereby forming a PIN diode compatible with FinFET technology and having increased junction area.