Abstract:
A device and method for transmission and reception of control and data channels with a group reference signal (GRS). A GRS may include a first common reference signal associated with a first group of users and a second common reference signal associated with a second group of users. Some users or channels can be grouped to use one set of common reference signals and other users or channels can be grouped to use another set of common reference signals.
Abstract:
A method includes determining a first subframe on which to transmit a first downlink control information (DCI) message and determining a second subframe on which to transmit a first information. The method also includes determining a delay between the first subframe and the second subframe and transmitting, by a communications controller to a user equipment (UE), the second subframe in accordance with the delay.
Abstract:
System and method embodiments are provided for network adaptation and utilization of a discovery signal (DS). In an embodiment, a method in a UE for communicating in a wireless network includes receiving a parameter(s) from a network controller, wherein the parameter provides the UE with an activation time frame within which the UE can expect to receive a common reference signal (CRS) from a network component, a deactivation time frame within which the UE is not to expect to receive the CRS, and information for receiving and processing a DS from the network component; receiving the DS from the network component, wherein a structure and format of the DS conforms to the parameter received by the UE; refraining from attempting to perform CRS based procedures when the CRS is not received; and performing one of synchronization, cell identification, and DS based radio resource management (RRM) measurements according to the DS.
Abstract:
A method for operating a UE includes receiving, by the UE during an initial access sequence, a plurality of first inbound beams each transmitted by a communications controller in a different transmit direction over a first carrier, where the first inbound beams have a different subcarrier frequency range from each other, generating values of a receive metric in accordance with the first inbound beams, selecting one of the first inbound beams in accordance with the receive metric values, transmitting, by the UE, an indication of the selected first inbound beam, and receiving, by the UE, a second inbound beam transmitted by the communications controller in a transmit direction in accordance with the indication of the selected first inbound beam, where the second inbound beam has a second subcarrier frequency range of the first carrier that is different than a first subcarrier frequency range of the selected first inbound beam.
Abstract:
When at least one of device-to-device UEs in connections of a group of D2D UEs is outside of the coverage area of mobile network of an access point, an information exchange mechanism established directly between the D2D UEs, without involving a third party, is provided. A resource allocation method for a device-to-device (D2D) communication link between two or more D2D user equipments (UEs) in a mobile communication network is provided according to an example. The method includes a first D2D UE indicating resource allocation information for the D2D communication link in a resource allocation message, wherein the resource allocation message is mapped into a resource allocation format; wherein the resource allocation format comprises one or more format flags; wherein one or more resource allocation messages are differentiated in the resource allocation format in accordance to the one or more format flags; and the first D2D UE transmitting the resource allocation format in a Physical Sidelink Control Channel (PSCCH) to one or more additional D2D UEs.
Abstract:
A device is configured to perform a method of device-to-device (D2D) communication in a wireless communication network in accordance with a Long Term Evolution (LTE) standard. The method includes entering an RRC-Idle state or an RRC-Connected state. The method also includes transmitting, in the RRC-Idle state or RRC-Connected state, a D2D discovery signal for receipt by at least one second device in the network. The method further includes receiving, in the RRC-Idle state or RRC-Connected state, at least one D2D discovery signal from the at least one second device in the network.
Abstract:
A device and method for transmission and reception of control and data channels with a group reference signal (GRS). A GRS may include a first common reference signal associated with a first group of users and a second common reference signal associated with a second group of users. Some users or channels can be grouped to use one set of common reference signals and other users or channels can be grouped to use another set of common reference signals.
Abstract:
A method for operating a communications controller includes selecting a search space configuration out of a set of candidate search space configurations for a user equipment served by the communications controller, wherein the search space configuration specifies one or more search spaces to be monitored out of a set of search spaces, and signaling the selected search space configuration to the user equipment.
Abstract:
Embodiments are provided to support device-to-device (D2D) communications in a time-division duplexing (TDD) communications system, and ensure that D2D discovery signals are transmitted by user devices on an uplink subframe when there is a TDD frame configuration change. In an embodiment, a user device receives form the network a TDD frame configuration selected from a set of available TDD frame configurations according to the TDD configuration. The device further receives a D2D discovery configuration for a discovery time interval. The user device then allocates a transmission resource a D2D discovery signal within the discovery time interval according to the D2D discovery configuration. The user device is also configured to receive from another device a second D2D discovery signal during the discovery time interval in accordance with the TDD configuration and the D2D discovery configuration.
Abstract:
The disclosure relates to a base station configuring component carriers to user equipment (UE). The base station determines one or more component carriers to configure based on the UE carrier aggregation capability and sends a first configuration signaling to configure the UE with the component carriers in one or more component carrier sets. The base station configures each of the component carrier sets with a first common parameters and operations set and sends a second configuration signaling to configure the component carrier sets of the UE with the first common parameters and operations set. The base station then sends a third configuration signaling to configure each of the component carriers in the UE with a second parameters and operations set.