摘要:
A semiconductor structure includes a metal oxide semiconductor field effect transistor that includes a body contact region that extends from body region located beneath a channel region that separates a pair of source/drain regions within the metal oxide semiconductor field effect transistor. The body contact region is recessed with respect to a surface of the channel region to avoid shorting between a body contact and the source/drain regions.
摘要:
A semiconductor structure and method for forming the same. First, a semiconductor structure is provided, including (a) a semiconductor layer including (i) a channel region and (ii) first and second source/drain (S/D) extension regions, and (iii) first and second S/D regions, (b) a gate dielectric region in direction physical contact with the channel region via a first interfacing surface that defines a reference direction essentially perpendicular to the first interfacing surface, and (c) a gate region in direct physical contact with the gate dielectric region, wherein the gate dielectric region is sandwiched between and electrically insulates the gate region and the channel region. Then, (i) a first shallow contact region is formed in direct physical contact with the first S/D extension region, and (ii) a first deep contact region is formed in direct physical contact with the first S/D region and the first shallow contact region.
摘要:
Methods of stressing a channel of a transistor with a replaced gate and related structures are disclosed. A method may include providing an intrinsically stressed material over the transistor including a gate thereof; removing a portion of the intrinsically stressed material over the gate; removing at least a portion of the gate, allowing stress retained by the gate to be transferred to the channel; replacing (or refilling) the gate with a replacement gate; and removing the intrinsically stressed material. Removing and replacing the gate allows stress retained by the original gate to be transferred to the channel, with the replacement gate maintaining (memorizing) that situation. The methods do not damage the gate dielectric. A structure may include a transistor having a channel including a first stress that is one of a compressive and tensile and a gate including a second stress that is the other of compressive and tensile.
摘要:
A structure, semiconductor device and method having a substantially L-shaped silicide element for a contact are disclosed. The substantially L-shaped silicide element, inter alia, reduces contact resistance and may allow increased density of CMOS circuits. In one embodiment, the structure includes a substantially L-shaped silicide element including a base member and an extended member, wherein the base member extends at least partially into a shallow trench isolation (STI) region such that a substantially horizontal surface of the base member directly contacts a substantially horizontal surface of the STI region; and a contact contacting the substantially L-shaped silicide element. The contact may include a notch region for mating with the base member and a portion of the extended member, which increases the silicide-to-contact area and reduces contact resistance. Substantially L-shaped silicide element may be formed about a source/drain region, which increases the silicon-to-silicide area, and reduces crowding and contact resistance.
摘要:
A process is described for forming a fully multiple silicided gate for complementary MOSFET (CMOS) devices. A silicidation process is performed on a gate structure, which includes a gate material overlying a gate dielectric disposed on a substrate. A layer of insulating material is formed which covers the gate structure; the thickness of this layer is less at sidewalls of the gate structure than on a top surface of the gate structure. A portion of the layer of insulating material is then removed, so that the sidewalls of the gate structure are exposed. A layer of metal is formed which covers the gate structure so that the metal is in contact with the sidewalls of the gate structure. The silicidation process is then performed, in which a metal silicide is formed from the gate material and the metal; the gate material is thereby fully silicided.
摘要:
A semiconductor structure and method for forming the same. The semiconductor structure comprises a field effect transistor (FET) having a channel region disposed between first and second source/drain (S/D) extension regions which are in turn in direct physical contact with first and second S/D regions, respective. First and second silicide regions are formed such that the first silicide region is in direct physical contact with the first S/D region and the first S/D extension region, whereas the second silicide region is in direct physical contact with the second S/D region and the second S/D extension region. The first silicide region is thinner for regions in contact with first S/D extension region than for regions in contact with the first S/D region. Similarly, the second silicide region is thinner for regions in contact with second S/D extension region than for regions in contact with the second S/D region.
摘要:
The present invention provides an isolation structure for a semiconductor substrate and a method for manufacturing the same, as well as a semiconductor device having the structure. The present invention relates to the field of semiconductor manufacture. The isolation structure comprises: a trench embedded in a semiconductor substrate; an oxide layer covering the bottom and sidewalls of the trench, and isolation material in the trench and on the oxide layer, wherein a portion of the oxide layer on an upper portion of the sidewalls of the trench comprises lanthanum-rich oxide. By the trench isolation structure according to the present invention, metal lanthanum in the lanthanum-rich oxide can diffuse into corners of the oxide layer of the gate stack, thus alleviating the impact of the narrow channel effect and making the threshold voltage adjustable.
摘要:
The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises: a semiconductor layer; a first fin being formed by patterning the semiconductor layer; and a second fin being formed by patterning the semiconductor layer, wherein: top sides of the first and second fins have the same height; bottom sides of the first and second fins adjoin the semiconductor layer; and the second fin is higher than the first fin. According to the present disclosure, a plurality of semiconductor devices with different dimensions can be integrated on the same wafer. As a result, manufacturing process can be shortened and manufacturing cost can be reduced. Furthermore, devices with different driving capabilities can be provided.
摘要:
The present invention provides a solar cell unit, which comprises a semiconductor plate of first-type doping or second-type doping; wherein the semiconductor plate has a first surface and a second surface opposite to the first surface; the semiconductor plate comprises a first-type doping region and second-type doping region, both the first-type doping region and the second-type doping region are located on the first surface of the semiconductor plate; a first sheet is provided on the side surface of the semiconductor plate that is adjacent to the first-type doping region, and a second sheet is provided on the side surface of the semiconductor plate that is adjacent to the second type doping region.
摘要:
The devices are manufactured by replacement gate process and replacement sidewall spacer process, and both tensile stress in the channel region of NMOS device and compressive stress in the channel region of PMOS device are increased by forming a first stress layer with compressive stress in the space within the first metal gate layer of NMOS and a second stress layer with tensile stress in the space within the second metal gate layer of PMOS, respectively. After formation of the stress layers, sidewall spacers of the gate stacks of PMOS and NMOS devices are removed so as to release stress in the channel regions. In particular, stress structure with opposite stress may be formed on sidewalls of the gate stacks of the NMOS device and PMOS device and on a portion of the source region and the drain region, in order to further increase both tensile stress of the NMOS device and compressive stress of the PMOS device.