摘要:
A method of manufacturing a semiconductor device having a substantially L-shaped silicide element forming a contact is disclosed. The substantially L-shaped silicide element, inter alia, reduces contact resistance and may allow increased density of CMOS circuits. In one embodiment, the substantially L-shaped silicide element includes a base member and an extended member, wherein the base member extends at least partially into a shallow trench isolation (STI) region such that a substantially horizontal surface of the base member directly contacts a substantially horizontal surface of the STI region; and a contact contacting the substantially L-shaped silicide element. The contact may include a notch region for mating with the base member and a portion of the extended member, which increases the silicide-to-contact area and reduces contact resistance. Substantially L-shaped silicide element may be formed about a source/drain region, which increases the silicon-to-silicide area, and reduces crowding and contact resistance.
摘要:
A structure, semiconductor device and method having a substantially L-shaped silicide element for a contact are disclosed. The substantially L-shaped silicide element, inter alia, reduces contact resistance and may allow increased density of CMOS circuits. In one embodiment, the structure includes a substantially L-shaped silicide element including a base member and an extended member, wherein the base member extends at least partially into a shallow trench isolation (STI) region such that a substantially horizontal surface of the base member directly contacts a substantially horizontal surface of the STI region; and a contact contacting the substantially L-shaped silicide element. The contact may include a notch region for mating with the base member and a portion of the extended member, which increases the silicide-to-contact area and reduces contact resistance. Substantially L-shaped silicide element may be formed about a source/drain region, which increases the silicon-to-silicide area, and reduces crowding and contact resistance.
摘要:
A structure, semiconductor device and method having a substantially L-shaped silicide element for a contact are disclosed. The substantially L-shaped silicide element, inter alia, reduces contact resistance and may allow increased density of CMOS circuits. In one embodiment, the structure includes a substantially L-shaped silicide element including a base member and an extended member, wherein the base member extends at least partially into a shallow trench isolation (STI) region such that a substantially horizontal surface of the base member directly contacts a substantially horizontal surface of the STI region; and a contact contacting the substantially L-shaped silicide element. The contact may include a notch region for mating with the base member and a portion of the extended member, which increases the silicide-to-contact area and reduces contact resistance. Substantially L-shaped silicide element may be formed about a source/drain region, which increases the silicon-to-silicide area, and reduces crowding and contact resistance.
摘要:
A structure for a semiconductor device, according to an embodiment, includes: a substantially L-shaped silicide element including a base member and an extended member, wherein the base member extends at least partially into a shallow trench isolation (STI) region such that a substantially horizontal surface of the base member directly contacts a substantially horizontal surface of the STI region; and a contact contacting the substantially L-shaped silicide element.
摘要:
A semiconductor structure includes a base semiconductor substrate having a doped region located therein, and an epitaxial region located over the doped region. The semiconductor structure also includes a final isolation region located with the doped region and the epitaxial region. The final isolation region has a greater linewidth within the doped region than within the epitaxial region. A method for fabricating the semiconductor structure provides for forming the doped region prior to the epitaxial region. The doped region may be formed with reduced well implant energy and reduced lateral straggle. The final isolation region with the variable linewidth provides a greater effective isolation depth than an actual trench isolation depth.
摘要:
A method for providing a dual stress memory technique in a semiconductor device including an nFET and a PFET and a related structure are disclosed. One embodiment of the method includes forming a tensile stress layer over the nFET and a compressive stress layer over the pFET, annealing to memorize stress in the semiconductor device and removing the stress layers. The compressive stress layer may include a high stress silicon nitride deposited using a high density plasma (HDP) deposition method. The annealing step may include using a temperature of approximately 400-1200° C. The high stress compressive silicon nitride and/or the anneal temperatures ensure that the compressive stress memorization is retained in the pFET.
摘要:
Structures and methods for forming keyhole shaped regions for isolation and/or stressing the substrate are shown. In a first embodiment, we form an inverted keyhole shaped trench in the substrate in the first opening preferably using a two step etch. Next, we fill the inverted keyhole trench with a material that insulates and/or creates stress on the sidewalls of the inverted keyhole trench. In a second embodiment, we form a keyhole stressor region adjacent to the gate and isolation structures. The keyhole stressor region creates stress near the channel region of the FET to improve FET performance. The stressor region can be filled with an insulator or a semiconductor material.
摘要:
A multilayer embedded stressor having a graded dopant profile for use in a semiconductor structure for inducing strain on a device channel region is provided. The inventive multilayer stressor is formed within areas of a semiconductor structure in which source/drain regions are typically located. The inventive multilayer stressor includes a first conformal epi semiconductor layer that is undoped or lightly doped and a second epi semiconductor layer that is highly dopant relative to the first epi semiconductor layer. The first and second epi semiconductor layers each have the same lattice constant, which is different from that of the substrate they are embedded in. The structure including the inventive multilayer embedded stressor achieves a good balance between stress proximity and short channel effects, and even eliminates or substantially reduces any possible defects that are typically generated during formation of the deep source/drain regions.
摘要:
A multilayer embedded stressor having a graded dopant profile for use in a semiconductor structure for inducing strain on a device channel region is provided. The inventive multilayer stressor is formed within areas of a semiconductor structure in which source/drain regions are typically located. The inventive multilayer stressor includes a first conformal epi semiconductor layer that is undoped or lightly doped and a second epi semiconductor layer that is highly dopant relative to the first epi semiconductor layer. The first and second epi semiconductor layers each have the same lattice constant, which is different from that of the substrate they are embedded in. The structure including the inventive multilayer embedded stressor achieves a good balance between stress proximity and short channel effects, and even eliminates or substantially reduces any possible defects that are typically generated during formation of the deep source/drain regions.
摘要:
The present invention relates to a semiconductor device including at least one n-channel field effect transistor (n-FET). Specifically, the n-FET includes first and second patterned stressor layers that both contain a carbon-substituted and tensilely stressed single crystal semiconductor. The first patterned stressor layer has a first carbon concentration and is located in source and drain (S/D) extension regions of the n-FET at a first depth. The second patterned stressor layer has a second, higher carbon concentration and is located in S/D regions of the n-FET at a second, deeper depth. Such an n-FET with the first and second patterned stressor layers of different carbon concentration and different depths provide improved stress profile for enhancing electron mobility in the channel region of the n-FET.