Abstract:
A system including a first transistor, a first capacitor and a circuit. The first transistor has a first control input and is configured to regulate an output voltage. The first capacitor is coupled at one end to the first control input and at another end to a circuit reference. The circuit is configured to provide a first voltage to the first control input, where the first voltage includes an offset voltage that is referenced to the output voltage and adjusted to compensate for variations in the first transistor.
Abstract:
Stress compensated systems and methods of compensating for electrical and mechanical stress are discussed. One example system can include a first circuit and a global stress compensation component. The first circuit can be configured to generate a first signal and can comprise at least one local stress compensation component (e.g., employing dynamic element matching, chopping, etc.). The global stress compensation component can comprise one or more stress sensors configured to sense one or more stress components associated with the system. The global stress compensation component can be configured to receive the first signal and to compensate for stress effects on the first signal.
Abstract:
Embodiments relate to systems and methods for sensor self-diagnostics using multiple signal paths. In an embodiment, the sensors are magnetic field sensors, and the systems and/or methods are configured to meet or exceed relevant safety or other industry standards, such as SIL standards. For example, a monolithic integrated circuit sensor system implemented on a single semiconductor ship can include a first sensor device having a first signal path for a first sensor signal on a semiconductor chip; and a second sensor device having a second signal path for a second sensor signal on the semiconductor chip, the second signal path distinct from the first signal path, wherein a comparison of the first signal path signal and the second signal path signal provides a sensor system self-test.
Abstract:
Embodiments related to magnetic current sensors, systems and methods. In an embodiment, a magnetic current sensor integrated in an integrated circuit (IC) and housed in an IC package comprises an IC die formed to present at least three magnetic sense elements on a first surface, a conductor, and at least one slot formed in the conductor, wherein a first end of the at least one slot and at least one of the magnetic sense elements are relatively positioned such that the at least one of the magnetic sense elements is configured to sense an increased magnetic field induced in the conductor proximate the first end of the at least one slot.
Abstract:
A digital sensor system includes a sensor element, an analog-to-digital converter coupled to the sensor element, and a wake-up circuit configured to activate the sensor element and the analog-to-digital converter in response to a predefined event.
Abstract:
A sensor device includes a high voltage component, a sensor component and a charge storage component. The sensor component utilizes a low voltage supply. The high voltage component is configured to generate the low voltage supply from a high voltage supply. The charge storage component is configured to provide charge for the low voltage supply during a power break. The charge storage component has a vertical capacitor.
Abstract:
A spinning current Hall sensor configured to provide a sequence of input signals in response to a bias current being applied to a sequence of terminals of Hall sensing elements of the Hall sensor, the terminals of the Halls sensing elements configured to be interconnected in a sequence of configurations between a bias current supply and ground, with the bias current supply being connected to and applying the bias current to a different one of the terminals of each configuration. A chopping circuit demodulates the sequence of input signals to provide a corresponding sequence of demodulated positive and negative signals, with a residual offset calibration signal for the spinning current Hall sensor being based on the sequence of demodulated positive and negative signals.
Abstract:
One embodiment of the present invention relates to a vertical Hall-effect device. The device includes at least two supply terminals arranged to supply electrical energy to the first Hall-effect region; and at least one Hall signal terminal arranged to provide a first Hall signal from the first Hall-effect region. The first Hall signal is indicative of a magnetic field which is parallel to the surface of the semiconductor substrate and which acts on the first Hall-effect region. One or more of the at least two supply terminals or one or more of the at least one Hall signal terminal comprises a force contact and a sense contact.
Abstract:
A self powered memory system is disclosed. The system includes a volatile supply component, a battery component, a switch component, and a volatile memory component. The volatile supply component is configured to provide a time varying supply. The battery component is configured to generate a non-volatile supply. The switch component is configured to generate a persistent supply from the time varying supply and the non-volatile supply. The volatile memory component is configured to maintain data by using the persistent supply.
Abstract:
A vertical Hall sensor includes first and second vertical Hall effect regions formed in a semiconductor substrate and of the same doping type, with first and second pluralities of contacts arranged at one side of the first or second vertical Hall effect regions, respectively. The second vertical Hall effect region is connected in series with the first vertical Hall effect region regarding a power supply to the first and second vertical Hall effect regions. The vertical Hall sensor further includes first and second layers adjacent to the first and second vertical Hall effect regions at a side other than a side of the first or second pluralities of contacts. The first and second layers have different doping properties than the first and second vertical Hall effect regions and insulate the first and second vertical Hall effect regions from a bulk of the semiconductor substrate by at least one reverse-biased p-n junction per vertical Hall effect region during an operation of the vertical Hall sensor.